Published June 10, 2016 | Version v1
Dataset Open

Data from: Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 2. Separating the relative effects of gene flow and genetic drift

  • 1. Agrocampus Ouest
  • 2. French National Institute for Agricultural Research
  • 3. French National Centre for Scientific Research
  • 4. Ecology and Ecosystem Health

Description

Studying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets. Our analysis of the variation of eight microsatellite loci across four study sites showed that (i) wild H. schachtii populations displayed fine-scaled genetic structure with no evidence of substantial levels of gene flow beyond the scale of the host plant, and comparisons with simulations indicate that (ii) genetic drift substantially affected the residual signals of isolation-by-distance processes, leading to departures from migration-drift equilibrium. In contrast to what can be suspected for (crop) field populations, this showed that wild cyst nematodes have very low dispersal capabilities and are strongly disconnected from each other. Our results provide some key elements for designing pest control strategies, such as decreasing passive dispersal events to limit the spread of virulence among field nematode populations.

Notes

Files

PopulationCodeAndSpatialCoordinates.txt

Files (111.9 kB)

Name Size Download all
md5:722de95872c5087d71170a4b1bf291f8
108.6 kB Download
md5:f4d2649daec4bbc156f0a9e0b55abeca
3.3 kB Preview Download

Additional details

Related works

Is cited by
10.1111/eva.12401 (DOI)