Published November 15, 2018 | Version v1
Dataset Open

Data from: Trade-offs between water loss and gas exchange influence habitat suitability of a woodland salamander

  • 1. Clemson University

Description

1. Reversible acclimation increases resilience to environmental stress, but acclimation may have hidden costs due to underlying links between related physiological traits. Interactions between physiological traits might result in trade-offs that undermine whole-organism performance if the change in a related trait reduces the net benefits of acclimation or increases susceptibility to alternative environmental stressors. 2. Metabolic rate and water loss rate are two fundamental physiological traits that could interact due to their dependence on gas exchange across shared physical surfaces. Reductions in water loss rate in response to dehydration stress might reduce metabolic rate by constraining the flux of both water and oxygen. 3. We examined acclimation of metabolic rate and water loss rate using a species of woodland salamander (Plethodon metcalfi) in response to temperature and humidity using a full factorial experimental design. We controlled the evaporative demand of the air across temperatures to assess temperature and humidity as independent cues for acclimation. We predicted that reductions in water loss rate would coincide with reductions in metabolic rate in response to temperature due to shared physical and chemical pathways. We also assessed acclimation of heart rates as a potential compensatory mechanism used to promote oxygen delivery. We integrated these responses into a biophysical model developed from first principles to demonstrate the potential for these interactions to influence habitat suitability. 4. We found that reductions of water loss rates during thermal acclimation were associated with simultaneous reductions in metabolic rates, and we did not find a compensatory response in heart rates. We suggest that these linkages underlie whole-organism strategies (e.g., physiological dormancy or arousal) for reducing the energetic costs imposed by warm temperatures. The biophysical model suggested that the interaction between these two traits potentially structures phenotypic variation in our population because certain combinations of trait values were incapable of reaching positive energy balance. 5. Trade-offs between linked physiological traits potentially structure whole-organism strategies for responding to environmental stressors and constrain phenotypic variation.

Notes

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: 1601485

Files

complementary_resid_data.csv

Files (182.9 kB)

Name Size Download all
md5:a470dd55f8ff5360fc0de1867903d202
36.8 kB Download
md5:f3195650f767d81dbd421571075ac5e6
12.2 kB Preview Download
md5:03af3e074c5b74380c8912f7c35f4a27
41.8 kB Download
md5:282ecfb0aab854cd0040e4381b1967e3
55.9 kB Preview Download
md5:ee2229892c1f937836c7ffee466eae99
36.3 kB Preview Download

Additional details

Related works

Is cited by
10.1111/1365-2435.13030 (DOI)