Published May 13, 2015 | Version v1
Dataset Open

Data from: Large-scale oceanographic fluctuations drive Antarctic petrel survival and reproduction

  • 1. Norwegian Polar Institute
  • 2. Norwegian Institute for Nature Research
  • 3. University of Windsor
  • 4. Fram Centre
  • 5. The Arctic University of Norway

Description

Polar Regions are experiencing environmental changes at unprecedented rates. These changes can spread throughout entire food webs from lower trophic levels to apex predators. As many top predators forage over large areas, these indirect effects may be associated with large-scale patterns of climate variability. Using global climate indices that are known to impact the Southern Ocean ecosystem (the El Niño Southern Oscillation and Antarctic Oscillation Indices) we assessed their efficacy to predict variation in the demographic parameters of Antarctic seabirds. First, we used a long-term dataset on adult survival (estimated from capture-mark-recapture data) and reproduction of Antarctic petrel Thalassoica antarctica, from the largest known breeding colony (Svarthamaren, Dronning Maud Land) and examined whether large-scale oceanographic fluctuations impact survival and reproduction. Second, we conducted an exhaustive literature review to determine whether the effects of large-scale environmental variability on Antarctic seabirds have a coherent fingerprint across the Antarctic continent and nearby islands. We found that most of the variation in both reproductive success, timing of hatching, and survival of Antarctic petrels can be accurately modeled using the two modes of large-scale climate variability in Antarctica. The literature review, combined with the results from our field study, suggests that while the anticipated trends in the global patterns of climatic variability will generally have detrimental effects on populations of top predators in the Southwest Atlantic, these conclusions cannot be extrapolated to all seabird populations in Antarctica without additional data.

Notes

Files

Files (73.4 kB)

Name Size Download all
md5:628ca136b988b06a3cbd1f87c5139a95
56.8 kB Download
md5:49b7d593c7ed8c12b5a7038ee689541f
16.6 kB Download

Additional details

Related works

Is cited by
10.1111/ecog.01659 (DOI)