Published April 14, 2018 | Version v1
Dataset Open

Data from: Selection and drift influence genetic differentiation of insular Canada lynx (Lynx canadensis) on Newfoundland and Cape Breton Island

  • 1. Trent University
  • 2. Canadian Museum of Nature
  • 3. University of Waterloo

Description

Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin-like growth factor-1 (IGF-1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF-1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF-1 locus of insular lynx.

Notes

Files

Files (130.6 kB)

Name Size Download all
md5:d8f8259ccc7380b3254fd8a638a1bdc8
130.6 kB Download

Additional details

Related works

Is cited by
10.1002/ece3.2945 (DOI)