There is a newer version of the record available.

Published June 29, 2021 | Version 0.1.0
Software Open

LiberTEM/LiberTEM-live: 0.1.0

  • 1. Jülich Research Centre, Ernst Ruska Centre
  • 1. Jülich Research Centre, Ernst Ruska Centre

Description

Homepage: https://libertem.github.io/LiberTEM-live
GitHub repository: https://github.com/LiberTEM/LiberTEM-live
PyPI: https://pypi.org/project/libertem-live/

LiberTEM-live is an extension module for LiberTEM that allows live data processing.

Note

LiberTEM-live is still experimental and under active development, including the overall architecture. New releases can include changes that break backwards compatibility until the code and architecture are proven in practical application and stabilized sufficiently.

That being said, we encourage early experimental use, are happy to support real-world application and appreciate feedback! You can contact us by creating or commenting on an Issue on GitHub or in the LiberTEM Gitter chat.

LiberTEM user-defined functions (UDFs) are designed to work without modification on both offline data and live data streams. That means all LiberTEM applications and LiberTEM-based modules can work with all supported detectors in LiberTEM-live.

Installation

The short version to install into an existing LiberTEM environment:

(libertem) $ python -m pip install "libertem-live"

See the LiberTEM installation instructions for more details on installing LiberTEM.

Detectors

Support for the Gatan K2 IS is currently under development.

License

LiberTEM-live is licensed under GPLv3. The I/O parts are also available under the MIT license, please see LICENSE files in the subdirectories for details.

Notes

We gratefully acknowledge funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VH-NG-1317 at Forschungszentrum Jülich in Germany.

We gratefully acknowledge funding from the Information & Data Science Pilot Project 'Ptychography 4.0' of the Helmholtz Association.

STEMx equipment and software for 4D STEM data acquisition with K2 IS camera courtesy of Gatan Inc.

Forschungszentrum Jülich is supporting LiberTEM-live with funding for personnel, access to its infrastructure and administrative support.

Files

Files (833.0 kB)

Name Size Download all
md5:e3639324911afb46017cd7c9782d9453
36.7 kB Download
md5:00d2e40935661c75fd366127e05a18fa
757.6 kB Download
md5:84c695dde8e2561555a63a17bedd2f50
38.7 kB Download

Additional details

Funding

VIDEO – Versatile and Innovative Detector for Electron Optics 780487
European Commission
CritCat – Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design 686053
European Commission
3D MAGiC – Three-dimensional magnetization textures: Discovery and control on the nanoscale 856538
European Commission
ESTEEM3 – Enabling Science and Technology through European Electron Microscopy 823717
European Commission

References

  • [Weber2018] Weber, Dieter (2018): Development of {IT} system and {TEM} camera performance. Zenodo. 10.5281/zenodo.2450624
  • [K2IS2018] {{Gatan Inc.}} (2018): {K2} {IS} camera. https://web.archive.org/web/20180809021832/http://www.gatan.com/products/tem-imaging-spectroscopy/k2-camera
  • [Clausen2018] Clausen, Alexander and Weber, Dieter and Ruzaeva, Karina and Migunov, Vadim and Baburajan, Anand and Bahuleyan, Abijith and Caron, Jan and Chandra, Rahul and Dey, Shankhadeep and Halder, Sayandip and Katz, Daniel S. and Levin, Barnaby D.A. and Nord, Magnus and Ophus, Colin and Peter, Simon and Schyndel van, Jay and Shin, Jaeweon and Sunku, Sai and Müller-Caspary, Knut and Dunin-Borkowski, Rafal E. (2021): Libertem/Libertem: 0.6.0. Zenodo. 10.5281/zenodo.1477847
  • [Sauter2013] Nicholas K. Sauter and Johan Hattne and Ralf W. Grosse-Kunstleve and Nathaniel Echols (2013): New Python-based methods for data processing. International Union of Crystallography ({IUCr}). 10.1107/s0907444913000863
  • [Jesse2016] S. Jesse and M. Chi and A. Belianinov and C. Beekman and S. V. Kalinin and A. Y. Borisevich and A. R. Lupini (2016): Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography. Springer Nature. 10.1038/srep26348
  • [Belianinov2015] Alex Belianinov and Rama Vasudevan and Evgheni Strelcov and Chad Steed and Sang Mo Yang and Alexander Tselev and Stephen Jesse and Michael Biegalski and Galen Shipman and Christopher Symons and Albina Borisevich and Rick Archibald and Sergei Kalinin (2015): Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. Springer Nature. 10.1186/s40679-015-0006-6
  • [Krajnak2016] Matus Krajnak and Damien McGrouther and Dzmitry Maneuski and Val O{\textquotesingle} Shea and Stephen McVitie (2016): Pixelated detectors and improved efficiency for magnetic imaging in {STEM} differential phase contrast. Elsevier {BV}. 10.1016/j.ultramic.2016.03.006
  • [Yang2015] H Yang and L Jones and H Ryll and M Simson and H Soltau and Y Kondo and R Sagawa and H Banba and I MacLaren and P D Nellist (2015): 4D {STEM}: High efficiency phase contrast imaging using a fast pixelated detector. {IOP} Publishing. 10.1088/1742-6596/644/1/012032
  • [Sagawa2017] Ryusuke Sagawa and Hao Yang and Lewys Jones and Martin Simson and Martin Huth and Heike Soltau and Peter D. Nellist and Yukihito Kondo (2017): Development of Fast Pixelated {STEM} Detector and its Applications using 4-Dimensional Dataset. Cambridge University Press ({CUP}). 10.1017/s1431927617000940
  • [doi:10.1002/9783527808465.EMC2016.6284] MacLaren, Ian and Nord, Magnus and Ross, Andrew and Krajnak, Matus and Hart, Martin and Doye, Alastair and McGrouther, Damien and Bali, Rantej and Banerjee, Archan and Hadfield, Robert (2016): Pixelated STEM detectors: opportunities and challenges. American Cancer Society. 10.1002/9783527808465.EMC2016.6284
  • [Nguyen2016] Kayla X. Nguyen and Prafull Purohit and Robert Hovden and Emrah Turgut and Mark W. Tate and Lena F. Kourkoutis and Gregory D. Fuchs and Sol M. Gruner and David A. Muller (2016): 4D-{STEM} for Quantitative Imaging of Magnetic Materials with Enhanced Contrast and Resolution. Cambridge University Press ({CUP}). 10.1017/s1431927616009430
  • [Cowley1979] J.M. Cowley (1979): Coherent interference in convergent-beam electron diffraction and shadow imaging. Elsevier {BV}. 10.1016/s0304-3991(79)80021-2
  • [Humphreys1988] C.J. Humphreys and D.J. Eaglesham and D.M. Maher and H.L. Fraser (1988): {CBED} and {CBIM} from semiconductors and superconductors. Elsevier {BV}. 10.1016/0304-3991(88)90371-3
  • [Steeds1979] J. W. Steeds (1979): Convergent Beam Electron Diffraction. Springer {US}. 10.1007/978-1-4757-5581-7_15
  • [Tate2016] Mark W. Tate and Prafull Purohit and Darol Chamberlain and Kayla X. Nguyen and Robert Hovden and Celesta S. Chang and Pratiti Deb and Emrah Turgut and John T. Heron and Darrell G. Schlom and Daniel C. Ralph and Gregory D. Fuchs and Katherine S. Shanks and Hugh T. Philipp and David A. Muller and Sol M. Gruner (2016): High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy. Cambridge University Press ({CUP}). 10.1017/s1431927615015664
  • [Jiang2018] Yi Jiang and Zhen Chen and Yimo Han and Pratiti Deb and Hui Gao and Saien Xie and Prafull Purohit and Mark W. Tate and Jiwoong Park and Sol M. Gruner and Veit Elser and David A. Muller (2018): Electron ptychography of 2D materials to deep sub-{\aa}ngström resolution. Springer Nature. 10.1038/s41586-018-0298-5
  • [Ophus2014] Colin Ophus and Peter Ercius and Michael Sarahan and Cory Czarnik and Jim Ciston (2014): Recording and Using 4D-{STEM} Datasets in Materials Science. Cambridge University Press ({CUP}). 10.1017/s1431927614002037
  • [Simson2015] M. Simson and H. Ryll and H. Banba and R. Hartmann and M. Huth and S. Ihle and L. Jones and Y. Kondo and K. Muller and P.D. Nellist and R. Sagawa and J. Schmidt and H. Soltau and L. Striider and H. Yang (2015): 4D-{STEM} Imaging With the {pnCCD} (S){TEM}-Camera. Cambridge University Press ({CUP}). 10.1017/s1431927615011836
  • [Pennycook2015] Timothy J. Pennycook and Andrew R. Lupini and Hao Yang and Matthew F. Murfitt and Lewys Jones and Peter D. Nellist (2015): Efficient phase contrast imaging in {STEM} using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. Elsevier {BV}. 10.1016/j.ultramic.2014.09.013
  • [Yang2015a] Hao Yang and Timothy J. Pennycook and Peter D. Nellist (2015): Efficient phase contrast imaging in {STEM} using a pixelated detector. Part {II}: Optimisation of imaging conditions. Elsevier {BV}. 10.1016/j.ultramic.2014.10.013
  • [QuantumMerlin2017] {Quantum Detectors} (2017): Merlin for {EM} technical datasheet. http://quantumdetectors.com/wp-content/uploads/2017/01/1532-Merlin-for-EM-Technical-Datasheet-v2.pdf
  • [Lawrence2017] Ethan L. Lawrence and Shery L. Y. Chang and Peter A. Crozier (2017): In situ {TEM} observations of Oxygen Surface Dynamics in {CeO}2 Cubes. Cambridge University Press ({CUP}). 10.1017/s1431927617010637
  • [Li2013] Xueming Li and Paul Mooney and Shawn Zheng and Christopher R Booth and Michael B Braunfeld and Sander Gubbens and David A Agard and Yifan Cheng (2013): Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-{EM}. Springer Nature. 10.1038/nmeth.2472
  • [XSpectrum-LambdaM2] X-Spectrum: {Lambda2M} large area {Medipix3} based detector array. http://www.x-spectrum.de/index_htm_files/X-Spectrum_datasheet_2M.pdf
  • [Li:2018ngp] Li, Xin and Dyck, Ondrej and Kalinin, Sergei V. and Jesse, Stephen (2018): Compressed Sensing of Scanning Transmission Electron Microscopy {(STEM)} on Non-Rectangular Scans. 1805.04957
  • [Lee2011] Craig A. Lee and Samuel D. Gasster and Antonio Plaza and Chein-I Chang and Bormin Huang (2011): Recent Developments in High Performance Computing for Remote Sensing: A Review. Institute of Electrical and Electronics Engineers ({IEEE}). 10.1109/jstars.2011.2162643
  • [Pan2016] Ming Pan and Cory Czarnik (2016): Image Detectors for Environmental Transmission Electron Microscopy ({ETEM}). Springer International Publishing. 10.1007/978-3-319-22988-1_5
  • [Dean2008] Jeffrey Dean and Sanjay Ghemawat (2008): {MapReduce}. Association for Computing Machinery ({ACM}). 10.1145/1327452.1327492
  • [Tsukamoto2014] Takafumi Tsukamoto and Takuo Yasunaga (2014): Development of a user-friendly system for image processing of electron microscopy by integrating a web browser and {PIONE} with Eos. Oxford University Press ({OUP}). 10.1093/jmicro/dfu070
  • [Thadani19951AE] Moti Thadani and Yousef Y. A. Khalidi (1995): An Efficient Zero-Copy {I / O} Framework for {UNIX} ®.
  • [Stancevic2003] Dragan Stancevic (2003): Zero Copy I: User-Mode Perspective. https://www.linuxjournal.com/article/6345?page=0,0
  • [Kelly2003] Paul H J Kelly (2003): Advanced Computer Architecture: Caches and Memory Systems. https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/2003-04/Lectures/Ch03/ACA-CH03-CurrentVersion.pdf
  • [Song2018] Dongsheng Song and Zi-An Li and Jan Caron and Andr{\'{a}}s Kov{\'{a}}cs and Huanfang Tian and Chiming Jin and Haifeng Du and Mingliang Tian and Jianqi Li and Jing Zhu and Rafal E. Dunin-Borkowski (2018): Quantification of Magnetic Surface and Edge States in an {FeGe} Nanostripe by Off-Axis Electron Holography. American Physical Society ({APS}). 10.1103/physrevlett.120.167204
  • [Guzzinati2019] Giulio Guzzinati and Wannes Ghielens and Christoph Mahr and Armand Béché and Andreas Rosenauer and Toon Calders and Jo Verbeeck (2019): Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping. 10.1063/1.5096245
  • [Panova2019] Ouliana Panova and Colin Ophus and Christopher J. Takacs and Karen C. Bustillo and Luke Balhorn and Alberto Salleo and Nitash Balsara and Andrew M. Minor (2019): Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Springer Science and Business Media {LLC}. 10.1038/s41563-019-0387-3
  • [Gibson1997] J. M. Gibson and M. M. J. Treacy (1997): Diminished Medium-Range Order Observed in Annealed Amorphous Germanium. American Physical Society ({APS}). 10.1103/physrevlett.78.1074
  • [Ophus_2019] Colin Ophus (2019): Four-Dimensional Scanning Transmission Electron Microscopy (4D-{STEM}): From Scanning Nanodiffraction to Ptychography and Beyond. Cambridge University Press ({CUP}). 10.1017/s1431927619000497
  • [Lichte2008] Lichte, H. and Lehmann, M. (2008): Electron holography–basics and applications. 10.1088/0034-4885/71/1/016102
  • [ophus_colin_2019_3592520] Ophus, Colin and Savitzky, Benjamin (2019): {Simulated calibration dataset for 4D scanning transmission electron microscopy}. Zenodo. 10.5281/zenodo.3592520
  • [giulio_guzzinati_2019_2566137] Giulio Guzzinati and Wannes Ghielens and Christoph Mahr and Armand Béché and Andreas Rosenauer and Toon Calders and Jo Verbeeck (2019): {Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer}. Zenodo. 10.5281/zenodo.2566137
  • [Weber2020] Dieter Weber and Alexander Clausen and Rafal E. Dunin-Borkowski (2020): Next-Generation Information Technology Systems for Fast Detectors in Electron Microscopy. World Scientific. 10.1142/9789811204579_0005
  • [Zeltmann2019] Steven E Zeltmann and Alexander Müller and Karen C Bustillo and Benjamin Savitzky and Lauren Hughes and Andrew M Minor and Colin Ophus (2019): Patterned Probes for High Precision {4D-STEM} Bragg Measurements. 10.1016/j.ultramic.2019.112890