Published March 15, 2016 | Version v1
Journal article Open

Influence of the Decadal Variability of the Kuroshio Extension on the Atmospheric Circulation in the Cold Season

  • 1. Sorbonne Universit é s (UPMC, Univ. Paris 06) CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France
  • 2. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 3. Department of Oceanography, University of Hawai‘i at M anoa, Honolulu, Hawaii

Description

p>The atmospheric response to the Kuroshio Extension (KE) variability during 1979ndash;2012 is investigated using a KE index derived from sea surface height measurements and an eddy-resolving ocean general circulation model hindcast. When the index is positive, the KE is in the stable state, strengthened and shifted northward, with lower eddy kinetic energy, and the Kuroshiondash;Oyashio Extension (KOE) region is anomalously warm. The reverse holds when the index is negative. Regression analysis shows that there is a coherent atmospheric response to the decadal KE fluctuations between October and January. The KOE warming generates an upward surface heat flux that leads to local ascending motions and a northeastward shift of the zones of maximum baroclinicity, eddy heat and moisture fluxes, and the storm track. The atmospheric response consists of an equivalent barotropic large-scale signal, with a downstream high and a low over the Arctic. The heating and transient eddy anomalies excite stationary Rossby waves that propagate the signal poleward and eastward. There is a warming typically exceeding 0.6 K at 900 hPa over eastern Asia and western United States, which reduces the snow cover by 4%ndash;6%. One month later, in Novemberndash;February, a high appears over northwestern Europe, and the hemispheric teleconnection bears some similarity with the Arctic Oscillation. Composite analysis shows that the atmospheric response primarily occurs during the stable state of the KE, while no evidence of a significant large-scale atmospheric response is found in the unstable state. Arguments are given to explain this strong asymmetry./p>

Notes

Postprint available, contact naclim@zmaw.de

Files

53-Frankignoul-J.Climate.pdf

Files (4.5 MB)

Name Size Download all
md5:9c33fee0f1062517929248ee47713a79
4.5 MB Preview Download

Additional details

Funding

NACLIM – North Atlantic Climate: Predictability of the climate in the North Atlantic/European sector related to North Atlantic/Arctic sea surface temperature and sea ice variability and change 308299
European Commission