Súlad a nesúlad medzi základnými ukazovateľmi lipidového metabolizmu stanovenými rutinnými laboratórnymi metódami a metódou protónovej nukleárnej magnetickej rezonančnej spektroskopie v náhodne vybranej populačnej vzorke
Creators
- 1. Ústav patologickej fyziológie LF UPJŠ, Košice
- 2. II. Kardiologická klinika, VÚSCH a LF UPJŠ, Košice
- 3. Allmedical s. r. o. Košice
Description
SÚHRN
Protónová nukleárna magnetická rezonančná spektroskopia umožňuje meranie počtu častíc jednotlivých lipoproteínov a ich rozmer. Cieľom našej pilotnej štúdie bolo vyšetrenie náhodne vybranej skupiny probandov bez klinicky zjavných príznakov aterosklerotickej choroby srdca touto metódou a porovnanie výsledkov s hodnotami základného lipidového panelu meranými bežnými metódami. Výsledky korelačnej analýzy medzi výsledkami protónovej nukleárnej magnetickej rezonančnej spektroskopie a základnými ukazovateľmi lipidového metabolizmu potvrdili predpoklad o pridanej hodnote novej metódy vo vzťahu k ateroskleróze. Medzi vybranými parametrami výsledkov protónovej nukleárnej magnetickej rezonančnej spektroskopie a základnými ukazovateľmi lipidového metabolizmu bol významný nesúlad. Na základe počtu LDL častíc bolo 70 % probandov zaradených do horšej rizikovej triedy, ako na základe LDL cholesterolu. V prípade HDL bol nesúlad menej častý a približne polovica probandov bola zaradená do nižšej rizikovej skupiny podľa počtu častíc v porovnaní s HDL cholesterolom.
ABSTRACT
Proton nuclear magnetic resonance spectroscopy makes measurement of individual lipoprotein particle number and size possible. The aim of our pilot study was the assessment of a randomly selected group of probands without clinically manifest symptoms of atherosclerotic cardiovascular with this method and the comparison of results with values of basic lipid parameters measured by routine laboratory methods. The correlation analysis between results of proton nuclear magnetic resonance spectroscopy and basic parameters of lipid metabolism confirmed our assumption about the added value of the new method in relation to atherosclerosis. There was a significant discordance between results of selected parameters of proton nuclear magnetic resonance spectroscopy and basic parametres of lipid metabolism. 70 % of probands were ranked into worse risk classes according to LDL particle number as compared with the LDL cholesterol values. In case of HDL the discordance was less common and about half of the probands was ranked into a better risk class according the particle number as compared with HDL cholesterol values.
Files
Laboratórna Diagnostika XXVI_1_2021 79–85.pdf
Files
(428.7 kB)
Name | Size | Download all |
---|---|---|
md5:51047441c8ccc5784a3969b7e2311c90
|
428.7 kB | Preview Download |
Additional details
References
- Aru, V. et al. (2017): Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. TrAC—Trends in Analytical Chemistry. doi: 10. 1016/j.trac.2017.07.009.
- Clouet-Foraison, N. et al. (2017): Advanced lipoprotein testing for cardiovascular diseases risk assessment: A review of the novel approaches in lipoprotein profiling. Clinical Chemistry and Laboratory Medicine. doi: 10.1515/cclm-2017-0091.
- Cromwell, W. C. et al. (2007): LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study-Implications for LDL management. Journal of Clinical Lipidology. doi: 10.1016/j.jacl.2007.10.001.
- El Harchaoui, K. et al. (2007): Value of Low-Density Lipoprotein Particle Number and Size as Predictors of Coronary Artery Disease in Apparently Healthy Men and Women. The EPIC-Norfolk Prospective Population Study. Journal of the American College of Cardiology. doi: 10.1016/j.jacc. 2006.09.043
- Huang, F., Wang, K., Shen, J. (2020): Lipoprotein-associated phospholipase A2: The story continues. Medicinal Research Reviews. doi: 10.1002/med.21597.
- Kamenský, G., Studenčan, M. (2019): Štandardný diagnostický a terapeutický postup na komplexný manažment pacienta so stabilnou koronárnou chorobou srdca. Available at: https://www.mzsr.sk/Zdroje?/Sources/dokumenty/SDTP/ standardy/1-5-2020/Kardiologia-Komplexny_manazment_ pacienta_so_stabilnou_koronarnou_choroba_srdca.pdf.
- Monsonis Centelles, S. et al. (2017): Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test. Analytical Chemistry. doi: 10.1021/acs.analchem.7b01329.
- Nordestgaard, B. G. et al. (2020): Quantifying atherogenic lipoproteins for lipid-lowering strategies: Consensus-based recommendations from EAS and EFLM. Atherosclerosis. doi: 10.1016/j.atherosclerosis.2019.12.005.
- Oravec, S. et al. (2019): Small dense LDL—An important part of the atherogenic lipoprotein profile in individuals with impaired metabolism of lipoproteins. Comparison of two analytical procedures. Neuroendocrinology Letters.
- Oravec, S. et al. (2020): Malé denzné LDL u osôb s poruchou metabolizmu lipoproteínov. Laboratórna Diagnostika, 25(2), pp. 43–46.
- Otvos, J. D., Jeyarajah, E. J., Bennett, D. W. (1991): Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clinical Chemistry. doi: 10.1093/ clinchem/37.3.377.
- Otvos, J. D. et al. (2011): Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. Journal of Clinical Lipidology. doi: 10.1016/j.jacl. 2011.02.001.
- Rácz, O. et al. (2009): Apoproteín B100 – významný krok k presnejšej diagnostike rozvoja aterosklerózy a rizika manifestácie jej následkov – 1. časť. Labor Aktuell, 8(2), pp. 17–21.
- Tada, H., Takamura, M., Kawashiri, M. aki (2020): What is the mechanism of genetic contributions to the development of atherosclerosis? Atherosclerosis. doi: 10.1016/j.atherosclerosis. 2020.05.006
- Žák, A. (2002): Poruchy metabolizmu lipidů a lipoproteínů. In Zima, T. (ed.): Laboratórní diagnostika. Praha: Galén, pp. 125–159.