Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published February 19, 2021 | Version v1
Journal article Open

General procedure for determining the geometric parameters of tools in the technological systems involving machining by cutting

  • 1. Kyiv National University of Construction and Architecture
  • 2. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Description

This paper reports a study aiming at devising a common procedure for determining the geometric parameters of tools’ cutting part in the technological systems that involve machining by cutting. Underlying the development of this procedure is the generalized theory of determining geometric parameters on tools’ cutting blades.

The analysis of determining the geometry of tool cutting edges in different coordinate systems has shown that the procedure used by a given theory depends on the type and design of tool cutting edges. In the process of cutting, the geometric parameters of tools change along the cutting edges while existing ones do not fully take into account this phenomenon. This is because geometric parameters are determined in the kinematic system of coordinates.

Particularly important to meet these requirements is for the cutting process whose effectiveness depends significantly on the accuracy in selecting methods for determining tool operational parameters.

In this regard, the current work has devised and proposed a general procedure for determining the geometry of tool cutting edges, directly during its application in the kinematic system. The procedure is based on the consideration of the resulting speed, in the form of the vector amount of the main movement and the amount of movement of feeds, which can consider feeds specified by the system’s equipment.

This approach to the development of a general procedure ensures that the geometry of the cutting part of a tool of any design is determined along its cutting edges during operation.

The devised procedure has significantly reduced the time of calculations and ensured the required geometric parameters of the cutting part of a groove cutter

Files

General procedure for determining the geometric parameters of tools in the technological systems involving machining by cutting.pdf

Additional details

References

  • Borovskiy, G. V., Grigor'ev, S. N., Maslov, A. R. et. al. (2005). Spravochnik instrumental'shchika. Moscow, 464.
  • Vasin, S. A., Vereshchaka, A. S., Kushner, V. S. (2001). Rezanie materialov. Termomehanicheskiy podhod k sisteme vzaimosvyazey pri rezanii. Moscow, 448.
  • Grabchenko, A. I., Zaloga, V. A., Vnukov, Yu. N. et. al.; Grabchenko, A. I., Zaloga, V. A. (Eds.) (2017). Integrirovannye protsessy obrabotki materialov rezaniem. Sumy, 451.
  • Grechishnikov, V. A. (1984). Sistemy avtomatizirovannogo proektirovaniya rezhushchih instrumentov. Moscow, 52.
  • Mazur, M. P., Vnukov, Yu. M., Zaloha, V. O.; Mazur, M. P. (Ed.) (2010). Osnovy teorii rizannia materialiv. Lviv, 422.
  • Tate, C. (2017). The fundamentals of industrial sawing. Cutting Tool Engineering. Available at: https://www.ctemag.com/news/articles/fundamentals-industrial-sawing
  • Altintas, Y. (2012). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511843723
  • Muzykant, Ya. A., Arpaz, Ya., Volosova, M. A. et. al. (2009). Entsiklopedicheskiy spravochnik-katalog. Moscow, 464.
  • Saharov, G. N., Arbuzov, O. B., Borovoy, Yu. L. et. al. (1989). Metallorezhushchie instrumenty. Moscow, 328.
  • Ordinartsev, I. A., Filippov, G. V., Shevchenko, A. N. et. al. (1987). Spravochnik instrumental'shchika. Leningrad, 846.
  • Klimenko, S. A., Manohin, A. S., Kopeykina, M. Yu. et. al. (2018). Vysokoproizvoditel'naya chistovaya lezviynaya obrabotka detaley iz staley vysokoy tverdosti. Kyiv, 304.
  • Tungsten carbide tipped circular saw blades for steel cutting. BLECHER GmbH & Co. Available at: https://www.blecher.com/en/products/tungsten-carbide-tipped-circular-saw-blades-for-steel-cutting/
  • Stephenson, D. A., Agapiou, J. S. (2016). Metal Cutting Theory and Practice. CRC Press, 969. doi: https://doi.org/10.1201/b19559
  • Tchernogorova, O. P., Bannykh, O. A., Blinov, V. M., Drozdova, E. I., Dityat'ev, A. A., Mel'nik, N. N. (2001). Superhard carbon particles forming from fullerites in a mixture with iron powder. Materials Science and Engineering: A, 299 (1-2), 136–140. doi: https://doi.org/10.1016/s0921-5093(00)01400-3
  • Ranganath, B. J. (2008). Thermal Metal Cutting Processes. I.K. International Publishing House Pvt. Limited, 164.
  • Stark. HSS Circular Saws (2017). GMV-Grafiche Marini Villorba, 27.
  • Vertriebsgesellschaft. Stark GmbH & Co. Available at: http://www.starktools.com/sites/503250bb96803b6018000004/theme/pdfs/pdfs/Catalogo_Metal_Cutting_2018_LOW.pdf
  • Volosatov, V. A. (1988). Spravochnik po elektrohimicheskim i elektrofizicheskim metodam obrabotki. Leningrad, 719.
  • Preimushchestva i nedostatki plazmennoy rezki (2012). Available at: http://metalurg.su/preimushhestva-i-nedostatki-plazmennoj-rezki.html
  • Droba, A., Svoreň, J., Marienčík, J. (2015). The Shapes of Teeth of Circular Saw Blade and Their Influence on its Critical Rotational Speed. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (2), 399–403. doi: https://doi.org/10.11118/actaun201563020399
  • Williston, E. M. (1989). Saws: design, selection, operation, maintenance. San Francisco, CA: Miller Freeman Publications, Inc. 450.
  • Rodin, P. R. (1990). Osnovy proektirovaniya rezhushchih instrumentov. Kyiv, 423.
  • Tandon, P. (2011). Cutting Tool Geometry: 3D Perspective. LAP Lambert Academic Publishing, 240.
  • Chang, W.-T., Chen, L.-C. (2015). Design and experimental evaluation of a circular saw blade with self-clamped cutting inserts. The International Journal of Advanced Manufacturing Technology, 83 (1-4), 365–379. doi: https://doi.org/10.1007/s00170-015-7563-7
  • Ravska, N. S. (2009). Osnovy kinematychnoi teoriyi vyznachennia heometrychnykh parametriv rizalnoi chastyny instrumentu. Nadiynist instrumentu ta optymizatsiya tekhnolohichnykh system, 24, 9–18.
  • Ravska, N. S., Kovalova, L. I., Okhrimenko, O. A., Vovk, V. V. (2008). Zvit pro naukovo-doslidnu robotu «Uzahalnena teoriya vyznachennia heometrychnykh parametriv rizalnoho instrumentu» vykonanyi po temi No. 2914f. Kyiv, 208.
  • Ravska, N. S., Okhrimenko, O. A. (2009). Determination of the cutting speed using different kinematic cutmaps. The processes of mechanical processing in machine building, 8, 158–163.
  • Ravska, N., Parnenko, V. (2016). The definition of the static front angles and static rear angles for shaped milling cutter in the vertex point of the cutting edge. Perspektyvni tekhnolohiyi ta prylady, 8, 89–93.