Published April 20, 2021 | Version v1
Journal article Open

Development of 3D environmental laser scanner using pinhole projection

  • 1. AlSafwa University College

Description

Three-dimensional (3D) information of capturing and reconstructing an object existing in its environment is a big challenge. In this work, we discuss the 3D laser scanning techniques, which can obtain a high density of data points by an accurate and fast method. This work considers the previous developments in this area to propose a developed cost-effective system based on pinhole projection concept and commercial hardware components taking into account the current achieved accuracy. A laser line auto-scanning system was designed to perform close-range 3D reconstructions for home/office objects with high accuracy and resolution. The system changes the laser plane direction with a microcontroller to perform automatic scanning and obtain continuous laser strips for objects’ 3D reconstruction. The system parameters were calibrated with Matlab’s built-in camera calibration toolbox to find camera focal length and optical center constraints. The pinhole projection equation was defined to optimize the prototype rotating axis equation. The developed 3D environmental laser scanner with pinhole projection proved the system’s effectiveness on close-range stationary objects with high resolution and accuracy with a measurement error in the range (0.05–0.25) mm. The 3D point cloud processing of the Matlab computer vision toolbox has been employed to show the 3D object reconstruction and to perform the camera calibration, which improves efficiency and highly simplifies the calibration method. The calibration error is the main error source in the measurements, and the errors of the actual measurement are found to be influenced by several environmental parameters. The presented platform can be equipped with a system of lower power consumption, and compact smaller size

Files

37-43_Development of 3D environmental laser scanner using pinhole projection.pdf

Additional details

References

  • Arayici, Y., Hamilton, A., Gamito, P., Albergaria, G. (2004). The Scope in the INTELCITIES Project for the Use of the 3D Laser Scanner. Proceedings of the Fourth International Conference on Engineering Computational Technology. doi: https://doi.org/10.4203/ccp.80.51
  • Huber, D. F. (2002). Automatic three-dimensional modeling from reality. CMU-RI-TR-02-35. The Robotics Institute, 201. Available at: https://www.ri.cmu.edu/pub_files/pub3/huber_daniel_2002_1/huber_daniel_2002_1.pdf
  • Bernardini, F., Rushmeier, H. E. (2000). Strategies for registering range images from unknown camera positions. Three-Dimensional Image Capture and Applications III. doi: https://doi.org/10.1117/12.380042
  • Chibane, J., Alldieck, T., Pons-Moll, G. (2020). Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr42600.2020.00700
  • Biffi, C., Cerrolaza, J. J., Tarroni, G., de Marvao, A., Cook, S. A., O'Regan, D. P., Rueckert, D. (2019). 3D High-Resolution Cardiac Segmentation Reconstruction From 2D Views Using Conditional Variational Autoencoders. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). doi: https://doi.org/10.1109/isbi.2019.8759328
  • Lague, D., Brodu, N., Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26. doi: https://doi.org/10.1016/j.isprsjprs.2013.04.009
  • Guisado-Pintado, E., Jackson, D. W. T., Rogers, D. (2019). 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology, 328, 157–172. doi: https://doi.org/10.1016/j.geomorph.2018.12.013
  • Aicardi, I., Dabove, P., Lingua, A., Piras, M. (2017). Integration between TLS and UAV photogrammetry techniques for forestry applications. iForest - Biogeosciences and Forestry, 10 (1), 41–47. doi: https://doi.org/10.3832/ifor1780-009
  • Biasion, A., Bornaz, L., Rinaudo, F. (2005). Laser Scanning Applications on Disaster Management. Geo-Information for Disaster Management, 19–33. doi: https://doi.org/10.1007/3-540-27468-5_2
  • Zhang, J., Singh, S. (2016). Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 41 (2), 401–416. doi: https://doi.org/10.1007/s10514-016-9548-2
  • Chen, Y., Wang, J., Li, J., Lu, C., Luo, Z., Xue, H., Wang, C. (2018). LiDAR-Video Driving Dataset: Learning Driving Policies Effectively. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2018.00615
  • Krüsi, P., Furgale, P., Bosse, M., Siegwart, R. (2016). Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic Nonplanar Environments. Journal of Field Robotics, 34 (5), 940–984. doi: https://doi.org/10.1002/rob.21700
  • Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P. et. al. (2018). The ApolloScape Dataset for Autonomous Driving. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). doi: https://doi.org/10.1109/cvprw.2018.00141
  • Hu, H., Zhao, T., Wang, Q., Gao, F., He, L. (2020). R-CNN Based 3D Object Detection for Autonomous Driving. CICTP 2020. doi: https://doi.org/10.1061/9780784483053.077
  • Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X. (2019). GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2019.00111
  • Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458. doi: https://doi.org/10.1016/j.compositesb.2016.11.034
  • Zaharia, C., Gabor, A.-G., Gavrilovici, A., Stan, A. T., Idorasi, L., Sinescu, C., Negruțiu, M.-L. (2017). Digital Dentistry – 3D Printing Applications. Journal of Interdisciplinary Medicine, 2 (1), 50–53. doi: https://doi.org/10.1515/jim-2017-0032
  • Thrun, S., Burgard, W., Fox, D. (2000). A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). doi: https://doi.org/10.1109/robot.2000.844077
  • Skotheim, O., Lind, M., Ystgaard, P., Fjerdingen, S. A. (2012). A flexible 3D object localization system for industrial part handling. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/iros.2012.6385508
  • Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W. et. al. (2016). Mobile robot vision system using continuous laser scanning for industrial application. Industrial Robot: An International Journal, 43 (4), 360–369. doi: https://doi.org/10.1108/ir-01-2016-0048
  • Kriegel, S., Bodenmuller, T., Suppa, M., Hirzinger, G. (2011). A surface-based Next-Best-View approach for automated 3D model completion of unknown objects. 2011 IEEE International Conference on Robotics and Automation. doi: https://doi.org/10.1109/icra.2011.5979947
  • Blais, F., Picard, M., Godin, G. (2004). Accurate 3D acquisition of freely moving objects. Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. doi: https://doi.org/10.1109/tdpvt.2004.1335269
  • Zhongdong, Y., Peng, W., Xiaohui, L., Changku, S. (2014). 3D laser scanner system using high dynamic range imaging. Optics and Lasers in Engineering, 54, 31–41. doi: https://doi.org/10.1016/j.optlaseng.2013.09.003
  • Tocheri, M. W. (2009). Laser Scanning: 3D Analysis of Biological Surfaces. Advanced Imaging in Biology and Medicine, 85–101. doi: https://doi.org/10.1007/978-3-540-68993-5_4
  • Hennessy, R. J., Kinsella, A., Waddington, J. L. (2002). 3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis: initial application to sexual dimorphism. Biological Psychiatry, 51 (6), 507–514. doi: https://doi.org/10.1016/s0006-3223(01)01327-0
  • Leone, A., Diraco, G., Distante, C. (2007). Stereoscopic System for 3-D Seabed Mosaic Reconstruction. 2007 IEEE International Conference on Image Processing. doi: https://doi.org/10.1109/icip.2007.4379212
  • Drap, P., Seinturier, J., Scaradozzi, D., Gambogi, P., Long, L., Gauch, F. (2007). Photogrammetry for virtual exploration of underwater archeological sites. XXI International CIPA Symposium. Athens.
  • Bianco, G., Gallo, A., Bruno, F., Muzzupappa, M. (2013). A Comparative Analysis between Active and Passive Techniques for Underwater 3D Reconstruction of Close-Range Objects. Sensors, 13 (8), 11007–11031. doi: https://doi.org/10.3390/s130811007
  • Wang, B., Jiang, L., Li, J. W., Cai, H. G., Liu, H. (2005). Grasping unknown objects based on 3d model reconstruction. Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. doi: https://doi.org/10.1109/aim.2005.1511025
  • Rusu, R. B., Blodow, N., Marton, Z. C., Beetz, M. (2009). Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/iros.2009.5354683
  • Rusu, R. B. (2010). Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. KI - Künstliche Intelligenz, 24 (4), 345–348. doi: https://doi.org/10.1007/s13218-010-0059-6
  • Beall, C., Lawrence, B. J., Ila, V., Dellaert, F. (2010). 3D reconstruction of underwater structures. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/iros.2010.5649213
  • Straub, J., Kerlin, S. (2014). Development of a Large, Low-Cost, Instant 3D Scanner. Technologies, 2 (2), 76–95. doi: https://doi.org/10.3390/technologies2020076
  • Louvrier, A., Marty, P., Barrabé, A., Euvrard, E., Chatelain, B., Weber, E., Meyer, C. (2017). How useful is 3D printing in maxillofacial surgery? Journal of Stomatology, Oral and Maxillofacial Surgery, 118 (4), 206–212. doi: https://doi.org/10.1016/j.jormas.2017.07.002
  • Birtchnell, T., Hoyle, W., Birtchnell, T., Hoyle, W. (2016). What is 3D Printing? The definitive guide. 3D Print Dev Glob South.
  • Arayici, Y. (2007). An approach for real world data modelling with the 3D terrestrial laser scanner for built environment. Automation in Construction, 16 (6), 816–829. doi: https://doi.org/10.1016/j.autcon.2007.02.008
  • Chi, S., Xie, Z., Chen, W. (2016). A Laser Line Auto-Scanning System for Underwater 3D Reconstruction. Sensors, 16 (9), 1534. doi: https://doi.org/10.3390/s16091534
  • Allegra, D., Gallo, G., Inzerillo, L., Lombardo, M., Milotta, F. L. M., Santagati, C. et. al. (2016). Low cost handheld 3D scanning for architectural elements acquisition. STAG: Smart Tools and Apps in computer Graphics. doi: https://dx.doi.org/10.2312/stag.20161372
  • Reshetyuk, Y. (2006). Calibration of terrestrial laser scanners Callidus 1.1, Leica HDS 3000 and Leica HDS 2500. Survey Review, 38 (302), 703–713. doi: https://doi.org/10.1179/sre.2006.38.302.703
  • Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P. (2016). Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests, 7 (12), 127. doi: https://doi.org/10.3390/f7060127
  • Lee, S. Y., Majid, Z., Setan, H. (2013). 3D data acquisition for indoor assets using terrestrial laser scanning. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-2/W1, 221–226. doi: https://doi.org/10.5194/isprsannals-ii-2-w1-221-2013
  • Abbas, M. A., Setan, H., Majid, Z., Chong, A. K., Idris, K. M., Aspuri, A. (2013). Calibration and Accuracy Assessment of Leica ScanStation C10 Terrestrial Laser Scanner. Developments in Multidimensional Spatial Data Models, 33–47. doi: https://doi.org/10.1007/978-3-642-36379-5_3
  • Wolk, R. M. (2008). Utilizing Google Earth and Google Sketchup to visualize wind farms. 2008 IEEE International Symposium on Technology and Society. doi: https://doi.org/10.1109/istas.2008.4559793
  • LOGITECH ® HD PRO WEBCAM C920. Available at: https://docs.rs-online.com/97f0/A700000006917072.pdf
  • MeshLab. Available at: https://www.meshlab.net/