Code and data in Fiksen and Reglero 2021. Atlantic bluefin tuna spawn early to avoid metabolic meltdown in larvae.
Description
The code is the basic model and the scripts needed to generate the figures in the paper.
OURNAL PUBLICATION CITATION: Øyvind Fiksen and Patricia Reglero. 2021. Atlantic bluefin tuna spawn early to avoid metabolic meltdown in larvae. Ecology.
Python code for the analyses and figures in the paper. Field data of tuna larva and Cladocera abundances are embedded in the code, with environmental drivers read from the .txt files (temperature, daylight) - see Appendix S1. Data from each realization of the model (sensitivity analyses) are included in separate files (.npy).
Author 1: Øyvind Fiksen, Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; oyvind.fiksen@uib.no
Author 2: Patricia Reglero, Centro Oceanográfico de Baleares, Instituto Español de Oceanografía (IEO, CSIC), 07015 Palma de Mallorca, Spain. patricia.reglero@ieo.es
Main Python code with model analyses, and the output figures:
FiguresforPaper.py - see code for explanatory text and details on the model, parameters and figures produced.
Input temperature and daylength data:
AverageTempData_NOAA.txt – input average temperature data (fig 2 and 3, in paper)
HoursofLight.txt – modelled day-length (hours), fig S1
Temperature data for different years (input data, for fig 3, main):
temp2003.npy
temp2004.npy
temp2006.npy
temp2011.npy
Metafile used in the Github repository
README.md
Sensitivity analysis. Egg fitness under combinations of fixed concentrations of nauplii (300-500) and Cladocera (10-100) (for fig S3):
flat_300_30.npy
flat_400_20.npy
flat_400_25.npy
flat_400_30.npy
flat_500_10.npy
flat_500_30.npy
flat_500_60.npy
flat_500_100.npy
Sensitivity analysis. Egg fitness with combinations of fixed nauplii (300-600) and seasonal Cladocera abundance in 10, 15 and 20% (010-015-02) of nearshore concentrations (for fig S3):
surv_300_010.npy
surv_400_010.npy
surv_500_010.npy
surv_500_015.npy
surv_600_02.npy
Sensitivity analysis – Growth output for combinations of temperature and prey combinations (for figs S4 and S5):
grT_n300C015.npy
gTr_n300C01.npy
gTr_n300C015.npy
gTr_n400C01.npy
gTr_n500C015.npy
gTr05_n300C01.npy
gTr05_n300C015.npy
gTr05_n400C01.npy
gTr05_n500_10.npy
gTr05_n500C015.npy
len_i_n300C01.npy
len_i_n400C01.npy
len_i_n500_01.npy
len_i_n500_10.npy
len_i_n500C015.npy
Sensitivity analysis – Egg fitness under no food limitation, with different daylengths (testing only):
nofLim.npy
nofLim2h.npy
nofLim24h.npy
Sensitivity analysis – Egg fitness different years, warm and cold (and 2006):
SurvT2003.npy
SurvT2004.npy
survT2006.npy
Figures produced from the code, for main paper (Main), Appendix S1 (Sx), and some extras – in both .svg and .png format:
fig_gut.png
Fig_Main_2AB.png
Fig_Main_3A.png
Fig_Main_3B.png
Figure_Main_2C.png
Figure_S3.png
Figure_S4.png
Figure_S5.png
Figure_S5_05.png
Figure_S4.svg
Figure_S5.svg
Figure_S5_05.svg
fig_gut.svg
Fig_Main_2AB.svg
Fig_Main_3A.svg
Fig_Main_3B.svg
fig_surv.svg
Figure_Main_2C.svg
Figure_S1.svg
Figure_S2.svg
Figure_S3.svg
Files
oyvindfiksen/Fiksen-Reglero2021-v1.0.0.zip
Files
(2.5 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:b73641d4223e97f536f41f6762f25426
|
2.5 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/oyvindfiksen/Fiksen-Reglero2021/tree/v1.0.0 (URL)