Planned intervention: On Wednesday June 26th 05:30 UTC Zenodo will be unavailable for 10-20 minutes to perform a storage cluster upgrade.
Published December 31, 2020 | Version v1
Journal article Open

ASSESSMENT OF ATMOSPHERIC WATER VAPOR REMOTE SENSING USING GPS SIGNALS BY RADIOSONDE AND MODIS SATELLITE IMAGES

  • 1. National Institute of Marine Geology and Geo-Ecology (GeoEcoMar)

Description

This paper is an evaluation of the atmospheric water vapor remote sensing by GPS signals. The integrated water vapor (IWV) is calculated based on the measurement of the tropospheric zenith total delay (ZTD) effects on the microwave signals emitted by GPS satellites. The methodology proposed in this work is based on the combination of the global navigation satellite system (GNSS) observations and navigation data from the international GNSS service (IGS) products with meteorological data, measured at the stations level, to calculate the ZTD delay and estimate the integrated water vapor value. This work was carried out using data records from12 IGS stations distributed in seven countries in the four seasons of the year. The obtained results are compared with the values generated by Radiosonde measurement and MODIS satellite images level 2 (Water Vapor data product). In more than 90% of cases, the difference between the GPS and Radiosonde solutions is less than 3 mm with a monthly RMS less than 1.6 and a correlation of about 95%. The comparison between the GPS and MODIS shows that in more than 65 % of the time, the difference between the two solutions is less than 4 mm with a monthly RMS less than 2.3, and the correlation is about 73%.

Files

10D_Beldjilali_2020.pdf

Files (2.9 MB)

Name Size Download all
md5:04abdcd9b4bdbfd3d70b39ece5b1de92
2.9 MB Preview Download

Additional details

References

  • Beldjilali B., Benadda B. (2016). Optimized station to estimate atmospheric integrated water vapor levels using GNSS signals and meteorology parameters. ETRI Journal, 38(6): 1172-1178, https://doi.org/10.4218/etrij.16.0116.0093
  • Berezin I.A., Timofeyev Yu.M., Virolainen Ya.A., Volkova K.A. (2016). Comparison of ground-based microwave measurements of precipitable water vapor with radiosounding data. Atmospheric and Oceanic Optics, 29(3): 274–281, https://doi.org/10.1134/S1024856016030040
  • Bevis M., Businger S., Herring T.A., Rocken C., Anthes A., Ware R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical research, Atmospheres, 97(D14): 15787-15801. https://doi.org/10.1029/92JD01517
  • Boccolari M., Fazlagic S., Frontero P., Lombroso L., Pugnaghi S., Santangelo R., Corradini S., Teggi S. (2002). GPS zenith total delays and precipitable water in comparison with special meteorological observations in Verona (Italy) during MAP-SOP. Annals of geophysics, 45(5), https://doi.org/10.4401/ag-3534
  • Chang L., Jin S. (2013). MODIS infrared (IR) water vapor calibration model and assessment. 21st International Conference on Geoinformatics (GEOINFORMATICS), Kaifeng, 2013, https://doi.org/10.1109/Geoinformatics.2013.6626197
  • Chang L., Jin S., He X. (2014). Assessment of InSAR atmospheric correction using both MODIS near-infrared and infrared water vapor products. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5726-5735, https://doi.org/10.1109/TGRS.2013.2292070
  • Chrysoulakis N., Cartalis C. (2002). Improving the estimation of land surface temperature for the region of Greece: Adjustment of a split window algorithm to account for the distribution of precipitable water. International Journal of Remote Sensing, 23(5): 871-880, Published online: 25 Nov 2010, https://doi.org/10.1080/01431160110071905
  • Davis J.L. Herring T.A., Shapiro I.I., Rogers A.E.E., Elgered G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6): 1593-1607. https://doi.org/10.1029/RS020i006p01593
  • Essen L. (1953). The refractive indices of water vapour, air, oxygen, nitrogen, hydrogen, deuterium and helium. Proceedings of the Physical Society, B66(3): 189-193.
  • Gao B.-C., Li R. (2008). The time series of Terra and Aqua MODIS near-IR water vapor products. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, 2008, III186-III189, https://doi.org/10.1109/IGARSS.2008.4779314
  • Gao B.-C., Yang P., Guo G., Park S.K,, Wiscombe W.J., Chen B. (2003). Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 895-900, https://doi.org/10.1109/TGRS.2003.810704
  • Gurtner W. (2007). RINEX: The Receiver Independent Exchange Format, Version 3.00, Astronomical Institute, University of Bern.
  • Ha J., Park KD., Kim K. (2010). Comparison of atmospheric water vapor profiles obtained by GPS, MWR and radiosonde. Asia-Pacific Journal of Atmospheric Science, 46(3): 233–241, https://doi.org/10.1007/s13143-010-1012-1
  • Herring T.A. (1992). Modelling atmospheric delays in the analysis of space geodetic data. Proc. Symp. on Refraction of Transatmospheric Signals in Geodesy, The Hague, The Netherlands, May 19-22, Netherlands Geodetic Commission, Publ, on Geodesy, New series, 36: 157-164.
  • Hopfield H.S. (1971). Tropospheric effect on electromagnetically measured range: prediction from surface weather data. Radio Science, 6(3): 357–367. https://doi.org/10.1029/RS006i003p00357
  • Jin S.G., Cardellach E., Xie F. (2014). GNSS Remote Sensing. Theory, Methods and Applications. Springer, Netherlands, 276 p.
  • Kirchengast G., Foelsche U., Steiner A. (2004). Occultations for Probing Atmosphere and Climate. Springer-Verlag Berlin Heidelberg, 408 p., https://doi.org/10.1007/978-3-662-09041-1
  • Klein Baltink H., van der Marel H., van der Hoeven A.G.A. (2002). Integrated atmospheric water vapor estimates from a regional GPS network. Journal of Geophysical Research, Atmospheres, 107(D3): 3-8, https://doi.org/10.1029/2000JD000094
  • Li C., Liu Y., Zhu R. (2012a). An improved algorithm for retrieving atmospheric water vapor using MODIS near-infrared data. 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, 2012, 1-4, https://doi.org/10.1109/RSETE.2012.6260383
  • Li W., Yuan Y., Ou J., Li H., Li Z. (2012b). A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chinese Science Bulletin 57(17): 2132–2139, https://doi.org/10.1007/s11434-012- 5010-9
  • Liu S., Zhang C., Guo X., Chu Y., Ge D., Fan J. (2006). Comparison of MODIS Atmospheric Water Vapor Retrieval, Meteorological Models Tropospheric Delay Estimation with the Results Derived from GPS. IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, 2006: 2615-2618, https://doi.org/10.1109/IGARSS.2006.675
  • Liu X., Yang Q, Cheng B., Xia B., Wang Y. (2010). Application of remote sensing water vapor based on GPS in the heavy rainfall. The 2nd Conference on Environmental Science and Information Application Technology (ESIAT), Wuhan, 2010: 344-347, https://doi.org/10.1109/ESIAT.2010.5568575
  • Marini J.W. (1972). Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Science, 7(2): 223-231. https://doi.org/10.1029/RS007i002p00223
  • Namaoui H., Kahlouche S., Belbachir A.H., Van Malderen R., Brenot H., Pottiaux E. (2017). GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria. Adv. Atmos. Sci., 34: 623–634, https://doi.org/10.1007/s00376-016-6111-1
  • Norazmi, M.F.B., Opaluwa, Y.D., Musa, T.A., Othman R. (2015). The Concept of Operational Near Real-Time GNSS Meteorology System for Atmospheric Water Vapour Monitoring over Peninsular Malaysia. Arabian Journal for Science and Engineering, 40(1): 235–244, https://doi.org/10.1007/s13369-014-1481-0
  • Realini E., Sato K., Tsuda T., Susilo S., Manik T. (2014). An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia. Prog. in Earth and Planet. Sci. 1(17). https://doi.org/10.1186/2197-4284-1-17
  • Reis A.R., Catalão J., Vieira G., Nico G. (2015). Mitigation of atmospheric phase delay in InSAR time series using ERA-interim model, GPS and MODIS data: Application to the permafrost deformation in Hurd Peninsula, Antarctica. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 3454-3457, https://doi.org/10.1109/IGARSS.2015.7326563
  • Sanz Subirana J., Zornoza J.M.J., Hernández-Pajares M. (2013). GNSS data processing: Vol. I: Fundamentals and Algorithms. ESA TM-23/1, ESA Communications, ISBN: 978-92-9221-886-7, 238 p.
  • Schüler T., Hein G.W., Fissfeller B. (2000). Improved tropospheric delay modeling using an integrated approach of numerical weather models and GPS. 13th Int. Tech. Meeting of the Satellite Division of the U.S.Inst. of Navigation, ION GPS, Salt Lake City, UT, 19-22 September, 600-615.
  • Shi J., Xu C., Guo J., Gao Y. (2015). Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. IEEE Transactions on Geoscience and Remote Sensing Society, 53 (6): 3452-3459, https://doi.org/10.1109/TGRS.2014.2377041
  • Singh D., Ghosh J.K., Kashyap D. (2014). Precipitable water vapor estimation in India from GPS-derived zenith delays using radiosonde data. Meteorology and Atmospheric Physics, 123: 209–220, https://doi.org/10.1007/s00703-013-0293-1
  • Takeichi, N., Sakai, T., Fukushima, S., Ito K. (2010). Tropospheric delay correction with dense GPS network in L1-SAIF augmentation. GPS Solutions, 14(2): 185–192, https://doi.org/10.1007/s10291- 009-0133-4
  • Thayer G.D. (1974). An improved equation for the radio refractive index of air. Radio Science, 9(10): 803-807. https://doi.org/10.1029/RS009i010p00803
  • Tregoning P., Herring T.A. (2006). Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophysical Research Letters, 33(23): 1-5, https://doi.org/10.1029/2006GL027706
  • Van Diggelen F. (1998). GPS accuracy: lies, damn lies, and statistics, GPS World, Nov. 29, 1998 (five pages).
  • Vázquez Becerra G.E., Grejner-Brzezinska, D.A. (2013). GPS-PWV estimation and validation with radiosonde data and numerical weather prediction model in Antarctica. GPS Solution, 17: 29-39, https://doi.org/10.1007/s10291-012-0258-8
  • Yao Y., Zhao Q. (2016). Maximally using GPS observation for water vapor tomography, IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7185-7196, https://doi.org/10.1109/TGRS.2016.2597241
  • Yuan Y., Zhang K., Rohm W., Choy S., Norman R., Wang C,-S. (2014). Realtime retrieval of precipitable water vapor from GPS precise point positioning. Journal of Geophysical Research, Atmospheres, 119(16): 10044-10057. https://doi.org/10.1002/2014jd021
  • Zheng, F., Lou, Y., Gu, S., Gong X., Shi C, (2018). Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. Journal of Geodesy, 92(5): 545–560. https://doi.org/10.1007/s00190-017-1080-4