Published May 1, 2021 | Version v1
Dataset Open

VHF Radio Echo Sounding from Dome C to Little Dome C

  • 1. University of Copenhagen
  • 2. Alfred Wegener Institute
  • 3. University of Alabama
  • 1. University Grenoble Alpes
  • 2. British Antarctic Survey
  • 3. University Roma Tre

Description

These are ice-penetrating radar data connecting the newly chosen Beyond EPICA Little Dome C core site to the EPICA Dome C core site, collected in late 2019. These data are presented in a paper in The Cryosphere (https://doi.org/10.5194/tc-2020-345), where full processing and collection methods are described.

 

Data collection and processing

Data were collected using a new very high frequency (VHF) radar, built by the Remote Sensing Center at the University of Alabama (Yan et al., 2020). The system transmitted 8 us chirps, with peak transmit power of 125--250 W per channel, at 200 MHz center frequency and 60 MHz bandwidth. There were 5--8 operational channels at various points. The antennas were pulled behind a tracked vehicle, with controlling electronics in the rear of the vehicle. Data were collected at travel speeds of 2--3.5 m/s.

Data processing consisted of coherent integration (i.e. unfocused SAR), pulse compression, motion compensation (by tracking internal horizons), coherent channel combination, and de-speckling using a median filter. Two-way travel time was converted to depth assuming a correction of 10 m of firn-air and a constant radar wave speed of 168.5 m/us (e.g., Winter et al., 2017). After other processing was complete, different radargrams were spliced together to create a continuous profile extending from EPICA Dome C to the Beyond EPICA Little Dome C core site, and then the data were interpolated to have constant, 10-m horizontal spacing. The re-interpolated data were used for horizon tracing, which was done semi-automatically to follow amplitude peaks between user-defined clicks. For the bed reflection, we always picked the first notable return in the region of the bed.

 

File description

The file format is hdf5, which can be read with many programming languages. There are three groups in the file: processed_data, picks, and geographic_information. The processed_data gives the return power matrix (dB), and the depth (m) and two-way travel time (us) for the fast-time dimension. The picks give the depths (m) of different reflecting horizons traced in the corresponding paper. Ages and age uncertainties (kyr), interpolated from the AICC2012 timescale, are included as attributes on each pick. Bed and basal unit picks are included (ageless). The geographic_information gives latitude and longitude (decimal degrees), and the distance along-profile (km).

 

References

Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M. F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.

Winter, A., Steinhage, D., Arnold, E. J., Blankenship, D. D., Cavitte, M. G. P., Corr, H. F. J., Paden, J. D., Urbini, S., Young, D. A., and Eisen, O.: Comparison of measurements from different radio-echo sounding systems and synchronization with the ice core at Dome C, Antarctica, 11, 653–668, https://doi.org/10.5194/tc-11-653-2017, 2017.

Yan, J.-B., Li, L., Nunn, J. A., Dahl-Jensen, D., O’Neill, C., Taylor, R. A., Simpson, C. D., Wattal, S., Steinhage, D., Gogineni, P., Miller, H., and Eisen, O.: Multiangle, Frequency, and Polarization Radar Measurement of Ice Sheets, 13, 2070–2080, https://doi.org/10.1109/JSTARS.2020.2991682, 2020.

Notes

These data were generated in the frame of Beyond EPICA. The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 815384 (Oldest Ice Core). It is supported by national partners and funding agencies in Belgium, Denmark, France, Germany, Italy, Norway, Sweden, Switzerland, The Netherlands and the United Kingdom. Logistic support is mainly provided by PNRA and IPEV through the Concordia Station system. The radar shipment and personnel transportation to Antarctica were provided by U.S. NSF under grant 1921418, which also partly supported the development of the VHF radar. Radar development was further supported by internal funding from the University of Alabama. DL and DDJ were partially supported by the Villum Foundation (grant number 16572). Any opinions expressed and arguments employed herein do not necessarily reflect the official views of the European Union funding agency or other national funding bodies.

Files

Files (539.8 MB)

Name Size Download all
md5:9b80abd642d36ae3a5ec612723eb785c
539.8 MB Download

Additional details

Related works

Is supplement to
Journal article: 10.5194/tc-15-1881-2021 (DOI)

Funding

Beyond EPICA – Beyond EPICA Oldest Ice Core: 1,5 Myr of greenhouse gas – climate feedbacks 815384
European Commission