Book Open Access

Vacuum-plasma multilayer protective coatings for turbine blades

Alex Sagalovych; Vlad Sagalovych; Victor Popov; Stas Dudnik

The methods of creating the advanced nanomaterials and nanotechnologies of functional multicomponent coatings Avinit (mono- and multilayer, nanostructured, gradient) to improve the performance of materials, components and parts are considered.

The vacuum-plasma nanotechnologies Avinit were developed based on the use of gas-phase and plasma-chemical processes of atomic-ionic surface modification and the formation of nanolayer coatings in the environment of non-steady low-temperature plasma.

Considerable attention is paid to the equipment for application of functional multilayer composite coatings: an experimental-technological vacuum-plasma automated cluster Avinit, which allows to implement complex methods of coating, combined in one technological cycle.

The information about the structure and service characteristics of Avinit coatings has a large place.

The results of metallographic, metallophysical, tribological investigations of properties of the created coatings and linking of their characteristics with parameters of sedimentation process are described. The possibilities of parameters processes regulation for the purpose of reception of functional materials with the set physicochemical, mechanical complex and other properties are considered.

The investigation of creating of multilayer protective surface coatings Аvinit based on Ti - TiN for turbine blades by vacuum-arc method was carried out.

The influence of different methods and modes of vacuum-plasma treatment of coated surface of substrates to the adhesion value of nanolayer protective Ti - TiN coatings is studied.

On the basis of carried out investigations the technology of coating the steam turbines blades for protection against flow-accelerated corrosions is developed.

The issues of development and industrial implementation of the latest technologies for applying wear-resistant antifriction coatings Avinit with the use of nanotechnology to increase the life of various critical elements of steam and nuclear turbines are covered in detail.

The book is aimed at specialists working in the field of ion-plasma surface modification of materials and functional coatings application.

Files (12.6 MB)
Name Size
Sagalovych.pdf
md5:36b348ff5ccd32bf5a0776aaa91bbf76
12.6 MB Download
  • Akolzin, P. A. (1982). Korroziia i zaschita metalla teploenergeticheskogo oborudovaniia. Moscow: Energoizdat, 304.

  • Priakhin, V. A., Povarov, O. A, Ryzhenkov, V. A. (1984). Problemy erozii rabochikh lopatok parovykh turbin. Teploenergetika, 10, 29–31.

  • Iavelskii, M. B., Shilin, Iu. P. (1981). Eroziia vykhodnykh kromok rabochikh lopatok i meropriiatiia po ee ustraneniiu. Energomashinostroenie, 10, 11–15

  • Seleznev, L. I., Ryzhenkov, V. A. (2007). Erozionnii iznos konstruktsionnykh materialov. Tekhnologiia metallov, 3, 19–24.

  • Ryzhenkov, V. A., Pogorelov, S. N., Nefedin, S. I. (2001). Issledovanie antikorrozionnykh svoistv iznosostoikikh pokrytii dlia zaschity rabochikh lopatok parovykh turbin moschnykh energoblokov. Vestnik MEI, 1, 5.

  • Krainov, V. K. (2002). Povyshenie resursa raboty teplotekhnicheskogo oborudovaniia TES na osnove primeneniia iznosostoikikh zaschitnykh pokrytii. Obschie voprosy elektroenergetiki, 2.

  • Paderov, A. N., Veksler, Iu. G. (2001). Pat. No. 2161661 C1 RU. Sposob naneseniia iznosostoikikh pokrytii i povysheniia dolgovechnosti detalei. MPK: C23C 14/06, C23C 14/22, C23C 14/32, C23C 14/48, C23C 14/58. No. 99118131/02; declareted: 16.08.1999; published: 10.01.2001.

  • Pokrytie obrabotannoi poverkhnosti, ustoichivoe k erozii tverdymi chastitsami (2009). Pat. No. 2009/0123737 USA. MPK: V32V 18/00. published: 14.05.2009.

  • Gavrilov, A. G., Sinelschikov, A. K., Kurbatova, E. I., Nepomiaschaia, S. A. (1996). Pat. No. 2061788 C1 RU. Sposob naneseniia pokrytii v vakuume. MPK: C23C 14/06. No. 93012698/02; declareted: 09.03.1993; published: 10.06.1996.

  • Paderov, A. N., Veksler, Iu. G. (2004). Pat. No. 2228387 C2 RU. Sposob naneseniia mnogosloinogo pokrytiia na metallicheskie izdeliia. MPK: C23C 14/06, C23C 14/48. No. 2002119793/02; declareted: 16.08.1999; published: 10.01.2001.

  • Smyslov, A. M., Smyslova, M. K., Mingazhev, A. D., Dyblenko, IU. M., Selivanov, K. S., Gordeev, V. Iu. et. al. (2010). Pat. No. 2390578 C2 RU. Sposob polucheniia erozionno stoikogo pokrytiia, soderzhaschego nanosloi, dlia lopatok turbomashin iz titanovykh splavov. MPK: C23C 14/06, C23C 14/48. No. 2007141873/02; declareted: 12.11.2007; published: 27.05.2010.

  • Ryzhenkov, V. A., Nesterov, S. B., Pogorelov, S. N. (1999). Issledovanie iznosostoikikh zaschitnykh pokrytii na osnove nitrida titana. Vakuumnaia nauka i tekhnika. Gurzuf.

  • Vladimirov, B. G., Guseva, M. I., Ivanov, S. M. et. al. (1982). Povyshenie tsiklicheskoi prochnosti metallov i splavov metodom ionnoi implantatsii. Poverkhnost. Fizika, khimiia, mekhanika, 7, 139–147.

  • Smyslov, A. M., Selivanov, K. S. (2007). Razrabotka i issledovanie tekhnologicheskikh metodov povysheniia fretting-stoikosti rabochikh lopatok iz titanovykh splavov. Vestnik UGATU Tekhnologiia mashinostroeniia, 9 (1 (19)), 77–83.

  • Sagalovich, O. V., Kononikhіn, O. V., Popov, V. V., Dudnіk, C. F., Sagalovich, V. V. (2010). Ustanovka Avinit dlia nanesennia bagatosharovikh funktsіonalnikh pokrittіv. Fizicheskaia inzheneriia poverkhnosti, 8, 336–347.

  • Sagalovych, A., Popov, V., Sagalovych, V., Dudnik, S., Popenchuk, R. (2020). Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 6–15. doi: http://doi.org/10.15587/1729-4061.2020.201540

  • Popov, V., Sagalovych, A., Sagalovych, V.; Sagalovych, V. (Ed.) (2020). Improving the performance, reliability and service life of aviation technology products based on the innovative vacuum-plasma nanotechnologies for application of avinit functional coatings and surfaces modification. Tallinn: Scientific Route OÜ, 102. doi: http://doi.org/10.21303/978-9916-9516-1-3

  • Sagalovich, A. V., Sagalovich, V. V., Dudin, S. V., Farenik, V. I. (2014). Comparative analysis of different plasma sources for reactive deposition of coatings and diffusion saturation of metals. Fizicheskaia inzheneriia poverkhnosti, 9 (3), 229–236.

  • Sagalovich, A. V., Kononykhin, A. V., Popov, V. V., Dudnik, S. F., Sagalovich, V. V. (2011). Tekhnologicheskie skhemy formirovaniia mnogosloinykh pokrytii «Avinit». Tekhnologicheskie sistemy, 2 (55), 46–54.

  • Betsofen, S. Ia., Petrov, L. M., Lazarev, E. M. et. al. (1990). Struktura i svoistva ionno-plazmennykh pokrytii ΤıΝ. Metally, 3, 158–165.

  • Valvoda, V., Černý, R., Kužel, R., Musil, J., Poulek, V. (1988). Dependence of microstructure of TiN coatings on their thickness. Thin Solid Films, 158 (2), 225–232. doi: http://doi.org/10.1016/0040-6090(88)90024-7

  • Karpman, M. G., Fetisov, G. P., Saidakhmedov, R. Kh., Tibrin, G. S. (1993). Prognozirovanie i eksperimentalnye issledovaniia fazovogo sostava ionno-plazmennykh pokrytii na osnove nitridov titana i khroma. MiTOM, 3, 37–38.

  • Siniaev, G. B., Vatolin, N. A., Trusov, B. G. Moiseev, G. K. (1982). Primenenie EVM dlia termodinamicheskikh raschetov metallurgicheskikh protsessov. Moscow: Nauka, 264.

  • Derflinger, V., Brändle, H., Zimmermann, H. (1999). New hard/lubricant coating for dry machining. Surface and Coatings Technology, 113 (3), 286–292. doi: http://doi.org/10.1016/s0257-8972(99)00004-3

  • Kostiuk, G. I. (2002). Fiziko-tekhnicheskie osnovy napyleniia pokrytii, ionnoi implantatsii i ionnogo legirovaniia, lazernoi obrabotki i uprochneniia, kombinirovannykh tekhnologii. Kniga 2. Kyiv: Antikva, 442.

  • Fuks-Rabinovich, G. S., Katsura, A. A., Moiseev, V. F., Dosbaeva, G. K. (1989). Vliianie fazovogo sostava na iznosostoikost ionno-plazmennykh pokrytii iz nitrida titana. Trenie i znos, 10 (4), 742–744.

  • Moiseev, V. F., Fuks-Rabinovich, G. S., Dosbaeva, G. K., Skvortsov, V. N. (1990). Viazkost i plastichnost ionno-plazmennykh pokrytii iz nitrida titana. Zavodskaia laboratoriia, 1, 57–59.

  • Biakova, A. V. (1992). Vliianie strukturnogo sostoianiia pokrytii iz nitrida titana na ikh prochnost. Sverkhtverdye materialy, 5, 30–37.

  • Kaismasov, L. K. (1991). Povyshenie kachestva iznosostoikikh ionno-plazmennykh pokrytii. Tiazheloe mashinostroenie, 12, 17–18.

  • Salnikov, A. C. (1993). Iznosostoikost nitridnykh plenok. MiTOM, 5, 2–5.

  • Jehn, H., Ettmayer, P. (1978). The molybdenum–nitrogen fhase diagram. Journal of the Less Common Metals, 58 (1), 85–98. doi: http://doi.org/10.1016/0022-5088(78)90073-5

  • Andreev, A. A., Kartmazov, G. N., Kostritsa, T. V., Romanov, A. A. (1981). Struktura vysokotverdykh pokrytii na osnove molibdena, poluchennykh pri kondensatsii plazmy vakuum-dugovogo razriada. MiTOM, 5, 33–35.

  • Perry, A. J., Baouchi, A. W., Petersen, J. H., Pozder, S. D. (1992). Crystal structure of molybdenum nitride films made by reactive cathodic arc evaporation. Surface and Coatings Technology, 54-55, 261–265. doi: http://doi.org/10.1016/s0257-8972(09)90060-3

  • Kazmanli, M., Ürgen, M., Cakir, A. (2003). Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD. Surface and Coatings Technology, 167 (1), 77–82. doi: http://doi.org/10.1016/s0257-8972(02)00866-6

  • Aksenov, I. I., Bren, V. G., Padalka, V. G., Khoroshikh, V. M. (1983). Ob sobennostiakh protsessa sinteza nitridov pri kondensatsii plazmy metallov. Khimiia vysokikh energii, 17 (3), 263–265.

  • Ürgen, M., Eryilmaz, O. L., Çakir, A. F., Kayali, E. S., Nilüfer, B., Işik, Y. (1997). Characterization of molybdenum nitride coatings produced by arc-PVD technique. Surface and Coatings Technology, 94-95, 501–506. doi: http://doi.org/10.1016/s0257-8972(97)00432-5

  • Andreev, A. A., Kartmazov, G. N., Kunchenko, V. V. (1999). Pokrytiia dlia porshnevykh kolets. Tiazheloe mashinostroenie, 2, 9–10.

  • Andreev, A. A., Kunchenko, V. V., Shulaev, V. M. et. al. (2002). Nanesenie vakuumno-dugovykh pokrytii CrxN + TiN na podlozhki iz chuguna i stali s posleduiuschei termoobrabotkoi. OTTOM-3, 86–88.

  • Zhou, M., Makino, Y., Nose, M., Nogi, K. (1999). Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films, 339 (1-2), 203–208. doi: http://doi.org/10.1016/s0040-6090(98)01364-9

  • Ikeda, T., Satoh, H. (1991). Phase formation and characterization of hard coatings in the TiAlN system prepared by the cathodic arc ion plating method. Thin Solid Films, 195 (1-2), 99–110. doi: http://doi.org/10.1016/0040-6090(91)90262-v

  • Sagalovich, A. V., Dudnik, C. F., Sagalovich, V. V., Popov, V. V. et. al. (2007). Multicomponent coatings for precise tribological pairs working in friction assembly of machine building and aviation. Fizicheskaia inzheneriia poverkhnosti, 5 (3-4), 155–164.

  • Haurt, R., Patscheider, J. (2000). From alloying to nanocomposites – improved performance of hard coatings. Advanced Engineering Materials, 2 (5), 247–259. doi: http://doi.org/10.1002/(sici)1527-2648(200005)2:5<247::aid-adem247>3.0.co;2-u

  • Vepřek, S., Reiprich, S. (1995). A concept for the design of novel superhard coatings. Thin Solid Films, 268 (1-2), 64–71. doi: http://doi.org/10.1016/0040-6090(95)06695-0

  • Aksenov, I. I., Andreev, A. A., Belous, V. A. et. al. (2015). Vakuum-dugovye pokrytiia. Tekhnologii, materialy, struktura, svoistva. Kharkiv: NNTS KHFTI, 379.

  • Efeoglu, I. (2007). Deposition and Characterization of a Multilayered-Composite Solid Lubricant Coating. Reviews on advanced materials science, 15, 87–94.

  • Andrievskii, R. A., Anisimova, I. A., Anisimov, V. P. (1992). Formirovanie struktury i mikrotverdost mnogosloinykh dugovykh kondensatov na osnove nitridov. FiKHOM, 2, 99–102.

  • Musil, J. (2000). Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125 (1-3), 322–330. doi: http://doi.org/10.1016/s0257-8972(99)00586-1

  • Sagalovich, A. V., Sagalovich, V. V., Dudnik, C. F. et. al. (2004). Issledovanie kharakteristik treniia i iznosa ionno-plazmennykh pokrytii, poluchennykh na aliuminievom splave. Fizicheskaia inzheneriia poverkhnosti, 2 (1-2), 110–114.

  • Sagalovych, A. V., Kononykhin, A. V., Popov, V. V., Sagalovych, V. V. (2013). Experimental research of multicomponent multilayer ion-plasma avinit coatings Fizicheskaia inzheneriia poverkhnosti, 11 (2), 4–17.

  • Sagalovych, A., Sagalovych, V., Kononyhin, A. et. al. (2011). The Tribological Investigation of Multicomponent Multilayered Ion-plasma Coatings Avinit. Tribology in industry, 33 (2), 79–86.

  • Sagalovich, A. V., Kononykhin, A. V., Popov, V. V. et. al. (2012). Izuchenie tribologicheskikh kharakteristik mnogosloinykh Mo-S pokrytii, poluchennykh gazofaznym metodom s ispolzovaniem metallorganicheskikh soedinenii. Tekhnologicheskie sistemy, 1 (58), 46–54.

  • Sagalovych, A., Sagalovych, V. (2013). Mo-C multilayered CVD coatings. Tribology in industry, 35 (4), 219–227.

  • Sagalovich, A. V., Glushkova, D. B., Kirichenko, I. G., Liubchenko, A. P., Sagalovich, V. V. (2008). Nanokompozitnye pokrytiia kak osnova povysheniia ekspluatatsionnykh kharakteristik konstruktsionnykh materialov. Strategiia kachestva v promyshlennosti. Varna, 1, 406–408.

  • Smyslov, A. M., Smyslova, M. K., Mingazhev, A. D., Selivanov, K. S. (2009). Multistage elektrolitplasma processing of products from the titan and titanic alloys. Vestnik UGATU. Mashinostroenie. Tekhnologiia i oborudovanie fiz. tekhn. obrabotki, 13 (1), 141–145.

  • Sagalovich, A. V., Popov, V. V., Sagalovich, V. V. (2019). Plazmove pretsizіine azotuvannia Avinit N. Tekhnologicheskie sistemy, 4 (89), 16–26.

  • Sahalovych, A. V., Popov, V. V., Sahalovych, V. V., Dudnyk, S. F., Bohoslavtsev, V. I., Stadnichenko, M. H., Yedynovych, A. B. (2020). Porivnialnyi analiz vtomnoi kontaktnoi mitsnosti poverkhon, zmitsnenykh tsementuvanniam ta ionno-plazmovym azotuvanniam Avinit N. Visnyk dvyhunobuduvannia, 1, 33–45.

  • Lakhtin, Iu. M., Arzamasov, B. N. (1985). Khimiko-termicheskaia obrabotka metallov. Moscow: Metallurgiia, 256.

  • Arzamasov, B. N., Bratukhin, A. G., Eliseev, Iu. S., Panaioti, T. A. (1999). Ionnaia khimiko-termicheskaia obrabotka splavov. Moscow: Izd-vo MGTU im. N. E. Baumana, 400.

  • Chatterdzhi-Fisher, R., Eizell, F. V. et. al. (1990). Azotirovanie i karbonitrirovanie. Moscow: Metallurgiia, 280.

  • Prokoshkin, D. A. (1984). Khimiko-termicheskaia obrabotka metallov – karbonitratsiia. Moscow: Mashinostroenie, Metallurgiia, 240.

  • Lakhtin, Iu. M., Kogan, Ia. D., Shpis, G.-I., Bomer, Z. (1991). Teoriia i tekhnologiia azotirovaniia. Moscow: Metallurgiia, 320.

  • Schanin, P. M., Koval, N. N., Borisov, D. P., Goncharenko, I. M. (1999). Pat. No. 2131480 C1 RU. Sposob formirovaniia iznosostoikogo pokrytiia na poverkhnosti izdelii iz konstruktsionnoi stali. MPK: C23C 14/06, C23C 14/48. No. 97112300/02; declareted: 15.07.1998; published: 10.06.1999.

  • Chumikov, A. B., Akifev, V. A., Sizykh, Iu. N. (2003). Pat. No. 2210621 C2 RU. Sposob kombinirovannoi vakuumnoi ionno-plazmennoi obrabotki instrumenta. MPK: C23C 14/48. No. 2000123120/02; declareted: 05.09.2000; published: 20.08.2003.

  • Sahalovych, O. V., Sahalovych, V. V. (2013). Pat. No. 84664 UA. Sposib ionno-plazmovoho pretsyziinoho azotuvannia poverkhon stalei i splaviv Avinit N. МПК: C23C 14/48. No. u 201305770; declareted: 16.08.2013; published: 25.10.2013, Bul. No. 20.

  • Sahalovych, O. V., Sahalovych, V. V. (2013). Pat. No. 107408 UA. Sposib ionno-plazmovoho pretsyziynoho azotuvannia poverkhon detali zi stalei i splaviv Avinit N. MPK: C23C 14/48, C23C 14/06. No. a201305768; declareted: 07.05.2013; published: 25.12.2014, Bul. No. 24.

  • Sagalovich, A. V., Kononykhin, A. V., Popov, V. V., Dudnik, C. F., Sagalovich, V. V. (2011). Eksperimentalnye issledovaniia pokrytii tipa Avinit. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. Tekhnologiia proizvodstva letatelnykh apparatov, 3 (80), 5–15.

  • Sagalovich, O. V., Sagalovich, V. V., Popov, V. V., Dudnik, S. F. (2020). Vacuum-plasma protective coating for turbines blades. Mechanics and Advanced Technologies, 1 (88), 124–134.

  • Sagalovich, O. V., Popov, V. V., Sagalovich, V. V., Dudnіk, S. F., Edinovich, A. B. (2020). Zastosuvannia vakuum-plazmovikh tekhnologіi Avinit do vigotovlennia povnorozmіrnikh visokotochnikh shesteren. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. Tekhnologiia proizvodstva letatelnykh apparatov, 1, 5–15.

  • Sahalovych, O. V., Sahalovych, V. V. (2014). Pat. No. 99816 UA. Sposib otrymannia eroziyno stiykoho bahatosharovoho pokryttia dlia lopatok turbomashyn. MPK: C23C 14/00. No. u201414066; declareted: 29.12.2014; published: 25.06.2015, Bul. No. 12, 4.

  • Sahalovych, O. V., Sahalovych, V. V. (2016). Pat. No. 110895 UA. Eroziinostiike bahatosharove pokryttia dlia lopatok turbomashyn i sposib yoho otrymannia. MPK: C23C 14/00, C23C 14/02, C23C 14/06, C23C 14/14, C23C 14/48. No. a201414065; declareted: 10.04.2015; published: 25.02.2016, Bul. No. 4.

13
14
views
downloads
Views 13
Downloads 14
Data volume 176.8 MB
Unique views 12
Unique downloads 14

Share

Cite as