Conference paper Open Access

A novel simulator for extended Hodgkin-Huxley neural networks

Sotirios Panagiotou; Rene Miedema; Harry Sidiropoulos; George Smaragdos; Christos Strydis; Dimitrios Soudris

Computational neuroscience aims to investigate and explain the behaviour and functions of neural structures, through mathematical models. Due to the models' complexity, they can only be explored through computer simulation. Modern research in this field is increasingly adopting large networks of neurons, and diverse, physiologically-detailed neuron models, based on the extended Hodgkin-Huxley (eHH) formalism. However, existing eHH simulators either support highly specific neuron models, or they provide low computational performance, making model exploration costly in time and effort. This work introduces a simulator for extended Hodgkin-Huxley neural networks, on multiprocessing platforms. This simulator supports a broad range of neuron models, while still providing high performance. Simulator performance is evaluated against varying neuron complexity parameters, network size and density, and thread-level parallelism. Results indicate performance is within existing literature for single-model eHH codes, and scales well for large CPU core counts. Ultimately, this application combines model flexibility with high performance, and can serve as a new tool in computational neuroscience.

Files (258.2 kB)
Name Size
258.2 kB Download
Views 77
Downloads 79
Data volume 20.4 MB
Unique views 69
Unique downloads 75


Cite as