Published December 8, 2017 | Version v1
Journal article Open

Molecular phylogenetics of the wrens and allies (Passeriformes: Certhioidea), with comments on the relationships of Ferminia

Description

Barker, F. Keith (2017): Molecular phylogenetics of the wrens and allies (Passeriformes: Certhioidea), with comments on the relationships of Ferminia. American Museum Novitates 2017 (3887): 1-28, DOI: 10.1206/3887.1, URL: http://www.bioone.org/doi/10.1206/3887.1

Files

source.pdf

Files (1.2 MB)

Name Size Download all
md5:76938db36b63dc62fb160ef57f350619
1.2 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF93FFB36B63DC62FB16FFF57F350619

References

  • Alstrom, P., P.G. Ericson, U. Olsson, and P. Sundberg. 2006. Phylogeny and classification of the avian superfamily Sylvioidea. Molecular Phylogenetics and Evolution 38: 381-397.
  • Bacon, C.D., et al. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America 112: 6110-6115.
  • Bangs, O. 1902. On a second collection of birds made in Chiriqui, by W.W. Brown, Jr. Proceedings of the New England Zoological Club 3: 15-70.
  • Barbour, T. 1926. A remarkable new bird from Cuba. Proceedings of the New England Zoological Club 9: 73-75.
  • Barbour, T. 1928. Notes on three Cuban birds. Auk 45: 28-32.
  • Barker, F K. 2004. Monophyly and relationships of wrens (Aves: Troglodytidae): a congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution 31: 486-504.
  • Barker, F.K., G.F. Barrowclough, and JG. Groth. 2002. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society of London Series B Biological Sciences 269: 295-308.
  • Barker, F.K., K.J. Burns, J. Klicka, S.M. Lanyon, and I.J. Lovette. 2013. Going to extremes: contrasting rates of diversification in a recent radiation of New World passerine birds. Systematic Biology 62: 298-320.
  • Barker, F.K., K.J. Burns, J. Klicka, I.J. Lovette, and S.M. Lanyon. 2015. New insights into New World biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. Auk: Ornithological Advances 132: 333-348.
  • Barker, F.K., A. Cibois, P. Schikler, J. Feinstein, and J. Cracraft. 2004. Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101: 11040-11045.
  • Bradley, D.W. and D.J. Mennill. 2009. Solos, duets and choruses: vocal behaviour of the Rufous-naped Wren (Campylorhynchus rufinucha), a cooperatively breeding neotropical songbird. Journal of Ornithology 150: 743-753.
  • Cracraft, J., et al. 2004. Phylogenetic relationships among modern birds (Neornithes): toward an avian tree of life. In J. Cracraft and M.J. Donoghue (editors), Assembling the tree of life: 468-489. New York: Oxford University Press.
  • Drovetski, S.V., et al. 2004. Complex biogeographic history of a Holarctic passerine. Proceedings of the Royal Society of London Series B Biological Sciences 271: 545-551.
  • Edgar, R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.
  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
  • Forneris, G., and O. Martinez. 2003. Primer registro fotografico de nidificacion de Ferminia cerverai. Cotinga 20: 98.
  • Fregin, S., M. Haase, U. Olsson, and P. Alstrom. 2012. New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers. BMC Evolutionary Biology 12.
  • Garrido, O.H. and A. Kirkconnell. 2000. Field guide to the birds of Cuba. Ithaca, NY: Cornell University Press.
  • Gibson, A., V. Gowri-Shankar, P.G. Higgs, and M. Rattray. 2005. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Molecular Biology and Evolution 22: 251-264.
  • Gill, F., and D. Donsker. 2017. IOC World bird list (v 7.3).
  • Martinez Gomez, J.E., B.R. Barber, A.T. Peterson, and R.M. Zink. 2005. Phylogenetic position and generic placement of the Socorro Wren (Thryomanes sissonii). Auk 122: 50-56.
  • Gruber, K.F., R.S. Voss, and S.A. Jansa. 2007. Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: Implications for phylogenetic inference and the evolution of GC content. Systematic Biology 56: 83-96.
  • Heled, J., and A.J. Drummond. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570-580.
  • Herreman, T. 2000. The utility of the nuclear gene δEF1 for the analysis of ordinal relationships among birds. Department of Biological Sciences. Hunter College, New York City, NY. 52 pp.
  • Johansson, U.S., J. Fjeldsa, and R.C.K. Bowie. 2008. Phylogenetic relationships within Passerida (Aves : Passeriformes): A review and a new molecular phylogeny based on three nuclear intron markers. Molecular Phylogenetics and Evolution 48: 858-876.
  • Kass, R.E., and A.E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90: 773-795.
  • Kimball, R.T., et al. 2009. A well-tested set of primers to amplify regions spread across the avian genome. Molecular Phylogenetics and Evolution 50: 654-660.
  • Kroodsma, D.E. 1975. Song patterning in the rock wren. Condor 77: 294-303.
  • Kroodsma, D.E., and J. Verner. 1978. Complex singing behaviors among Cistothorus wrens. Auk 95: 703-716.
  • Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20: 86-93.
  • Lanfear, R., B. Calcott, S.Y. Ho, and S. Guindon. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695-1701.
  • Lanfear, R., X. Hua, and D.L. Warren. 2016. Estimating the effective sample size of tree topologies from Bayesian phylogenetic analyses. Genome Biology and Evolution 8: 2319-2332.
  • Liu, L., D.K. Pearl, R. T. Brumfield, and S.V. Edwards. 2008. Estimating species trees using multiple-allele DNA sequence data. Evolution 62: 2080-2091.
  • Llanes Sosa, A., and C.A. Mancina. 2002. Notas sobre la conducta reproductiva de La Fermina, Ferminia cerverai (Passeriformes: Troglodytidae). El Pitirre 15: 131-132.
  • Logue, D.M. 2006. The duet code of the female Black-bellied Wren. Condor 108: 326-335.
  • Mann, N.I., F.K. Barker, J.A. Graves, K.A. Dingess-Mann, and P.J.B. Slater. 2006. Molecular data delineate four genera of "Thryothorus" wrens. Molecular Phylogenetics and Evolution 40: 750-759.
  • Mann, N.I., K.A. Dingess, F.K. Barker, J.A. Graves, and P.J.B. Slater. 2009. A comparative study of song form and duetting in neotropical Thryothorus wrens. Behaviour 146: 1-43.
  • Manthey, J.D., J. Klicka, and G.M. Spellman. 2011. Cryptic diversity in a widespread North American songbird: phylogeography of the Brown Creeper (Certhia americana). Molecular Phylogenetics and Evolution 58: 502-512.
  • Marshall, D.C. 2010. Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees. Systematic Biology 59: 108-117.
  • Martinez, O., and A. Martinez. 1991. Primer registro de nidificacion y observaciones ecoetologicas de Ferminia cerverai (Aves: Troglodytidae). Revista Biologia 5: 91-95.
  • Mayr, E. 1946. History of the North American bird fauna. Wilson Bulletin 58: 3-41.
  • McCormack, J.E., et al. 2013. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. Plos ONE: e54848.
  • Molles, L.E., and S.L. Vehrencamp. 1999. Repertoire size, repertoire overlap, and singing modes in the banded wren (Thryothorus pleurostictus). Auk 116: 677-689.
  • Montes, C., et al. 2015. Middle Miocene closure of the Central American Seaway. Science 348: 226.
  • Moyle, R., et al. 2016. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nature Communications 7: 12709.
  • O'Dea, A., et al. 2016. Formation of the Isthmus of Panama. Science Advances 2: 8. [doi: 10.1126/ sciadv.1600883]
  • Pasquet, E., et al. 2014. Evolution within the nuthatches (Sittidae: Aves, Passeriformes): molecular phylogeny, biogeography, and ecological perspectives. Journal of Ornithology 155: 755-765.
  • Paynter, R. A., Jr. and C. Vaurie. 1960. Family Troglodytidae. In E. Mayr and J.C. Greenway, Jr. (editors), Check-list of birds of the world: 379-440. Cambridge, MA: Museum of Comparative Zoology, Harvard University.
  • Phillips, M.J., and D. Penny. 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Molecular Phylogenetics and Evolution 28: 171-185.
  • Powell, A.F., F.K. Barker, and S.M. Lanyon. 2013. Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: an avian case study. Molecular Phylogenetics and Evolution 66: 69-79.
  • Prychitko, T.M., and W.S. Moore. 1997. The utility of DNA sequences of an intron from the b-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae). Molecular Phylogenetics and Evolution 8: 193-204.
  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Rice, N.H., A.T. Peterson, and G. Escalona-Segura. 1999. Phylogenetic patterns in montane Troglodytes wrens. Condor 101: 446-451.
  • Robbins, M.B. and A.S. Nyari. 2014. Canada to Tierra del Fuego: species limits and historical biogeography of the Sedge Wren (Cistothorus platensis). Wilson Journal of Ornithology 126: 649-662.
  • Sanmartin, I., H. Enghoff, and F. Ronquist. 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society 73: 345-390.
  • Sheldon, F.H., and F.B. Gill. 1996. A reconsideration of songbird phylogeny, with emphasis on the evolution of titmice and their sylvioid relatives. Systematic Biology 45: 473-495.
  • Sibley, C.G., and J.E. Ahlquist. 1990. Phylogeny and classification of birds: a study in molecular evolution. New Haven: Yale University Press.
  • Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
  • Sueur, J., T. Aubin, and C. Simonis. 2008. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 18: 213-226.
  • Tietze, D.T., J. Martens, and Y.-H. Sun. 2006. Molecular phylogeny of treecreepers (Certhia) detects hidden diversity. Ibis 148: 477-488.
  • Vaurie, C. 1957. Systematic notes on Palearctic birds. No. 29. The subfamilies Tichodromadinae and Sittinae. American Museum Novitates: 1854: 1-26.
  • Walstrom, V.W., J. Klicka, and G.M. Spellman. 2012. Speciation in the White-breasted Nuthatch (Sitta carolinensis): a multilocus perspective. Molecular Ecology 21: 907-920.
  • Xie, W.G., P. O. Lewis, Y. Fan, L. Kuo, and M.H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60: 150-160.
  • Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306-314.
  • Zhao, M., P. Alstrom, U. Olsson, Y. Qu, and F. Lei. 2016. Phylogenetic position of the Wallcreeper Tichodroma muraria. Journal of Ornithology 157: 913-918.