Published November 18, 2019 | Version Published
Journal article Open

Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell

  • 1. The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
  • 2. Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France

Description

The influence of the bipolar electrode on the voltammetry observed with a closed bipolar electrochemical cell (CBPEC) goes far beyond simply conducting electrons between the two electrolyte solutions. The surface of each pole of the bipolar electrode may contain redox active functional groups that generate misleading or interfering electrochemical responses. Herein, a 4-electrode CBPEC configuration was studied with the opposite poles of the bipolar electrode resting in separate aqueous and organic electrolyte solutions. Using gold mesh wire electrodes as the poles, we systematically investigated the many experimental variables that influence the observed voltammetry upon addition of a reductant (decamethylferrocene) to the organic phase. External bias of the driving electrodes forced electrons released by decamethylferrocene at the organic pole to flow along the bipolar electrode and reduce redox active surface functional groups at the aqueous pole, such as oxide or hydroxide groups, or carry out the oxygen reduction reaction (ORR) or hydrogen evolution reaction (HER). The 4-electrode CBPEC configuration diminishes capacitive currents, permitting observation of voltammetric signals from electron transfer processes related to surface functional groups at the aqueous pole at much lower scan rates than possible with working electrodes in conventional 3-electrode electrochemical cells. Surface modification, by oxidative or reductive electrochemical pre-treatment, changes the potential window experienced by the aqueous pole in the 4-electrode CBPEC in terms of its position versus the standard hydrogen electrode (SHE) and dynamic range. In a related observation, the electrochemical responses from the surface functional groups on the aqueous pole completely disappear after oxidative pre-treatment, but remain after reductive pre-treatment. The flow of electrons from decamethylferrocene to the surface of the aqueous pole is limited in magnitude, by the decamethylferrocene concentration, and kinetically limited, due to decamethylferrocene diffusion to the organic pole, in comparison to the infinite supply of electrons delivered to the surface of a working electrode in a 3-electrode cell. This unique feature of the 4-electrode CBPEC facilitates a very gradual evolution of the surface chemistry at the aqueous pole, for example from fully oxidised after oxidative pre-treatment to a more reduced state after repetitive cyclic voltammetry cycling. Perspective applications of this slow, controlled release of electrons to the electrode surface include spectroelectrochemical analysis of intermediate states for the reduction of metal salts to nanoparticles, or conversion of CO2 to reduced products at catalytic sites. The use of indium tin oxide (ITO) electrodes in CBPEC experiments for specific reactions is recommended to avoid misleading or interfering electrochemical responses from redox active functional groups prevalent on metallic surfaces. However, the electronic bridge to implement entirely depends on the reaction under study, as ITO also has drawbacks such as a lack of electrocatalytic activity and the requirement of an overpotential due to its semiconducting nature.

Notes

This publication has emanated from research by M. D. S. supported by the European Research Council through a Starting Grant (agreement no. 716792) and in part by a research grant from Science Foundation Ireland (SFI) (grant number 13/SIRG/2137). A. G.-Q. acknowledges funding received from an Irish Research Council Government of Ireland Postdoctoral Fellowship Award (grant number GOIPD/2018/252). A. G.-Q. and G. H. are grateful to the Agence Nationale pour la Recherche (Grant No. ANR-14-CE14-0002-01) for the partial financial support of this work. The authors are grateful to the support of the Irish Research Council and Campus France for travel support between the French and Irish groups through their joint ULYSSES programme. The authors would like to thank Dr Pekka Peljo (Aalto University, Finland) for fruitful conversations on the intricacies of operating a four-electrode closed bipolar electrochemical cell. Last but not least thanks to D. G. H. for being the best father ever.

Files

Electrochim_Acta_Manuscript_Open_Access.pdf

Files (2.6 MB)

Name Size Download all
md5:d569c1b62fb02c4206606880e2b5df8b
1.2 MB Preview Download
md5:6ef3cf1b83de3632032ea5e05fc95098
1.4 MB Preview Download

Additional details

Funding

Designing Reactive Functionalised Soft Interfaces _ Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen production 13/SIRG/2137
Science Foundation Ireland
SOFT-PHOTOCONVERSION – Solar Energy Conversion without Solid State Architectures: Pushing the Boundaries of Photoconversion Efficiencies at Self-healing Photosensitiser Functionalised Soft Interfaces 716792
European Commission