Poster Open Access

Stellar Flares and Habitable(?) Worlds from the TESS Primary Mission

Maximilian N. Günther

Stellar Flares and Habitable(?) Worlds from the TESS Primary Mission

On our search for habitable worlds, we have to account for explosive stellar flaring and coronal mass ejections (CMEs) impacting exoplanets’ surface (or cloud) habitability. These stellar outbursts are a double-edged sword. On the one hand, flares and CMEs are capable of stripping off atmospheres and extinguishing existing biology. On the other hand, flares might be the (only) means to deliver the trigger energy for prebiotic chemistry and initiate life. In this talk, I will highlight our TESS study of all stellar flares from Years 1 & 2 of the mission, driven by the "stella" convolutional neural network. Where manual vetting would have taken a lifetime, and conventional outlier detection would have missed the smallest flares, state-of-the-art machine learning approaches allow us a fast, efficient, and probabilistic characterization of flares. I will also discuss flaring as a function of stellar type, age, rotation, spot coverage, and other factors. Finally, I will link our findings to prebiotic chemistry and ozone sterilization, identifying which worlds might lie just in the right regime between too much and too little flaring. With the TESS extended mission and increased cadences (20s, 2min and 10min), stellar flare studies and new exoplanet discoveries will ultimately aid in defining criteria for exoplanet habitability.

Files (3.4 MB)
Name Size
poster_mnguenther.pdf
md5:af63e47154e7f49ca405ec1cedd43542
3.4 MB Download
67
75
views
downloads
All versions This version
Views 6767
Downloads 7575
Data volume 251.6 MB251.6 MB
Unique views 6161
Unique downloads 6666

Share

Cite as