Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published February 26, 2021 | Version v2
Poster Open

3D MHD simulations of an accreting young star

  • 1. Osaka University
  • 2. Tohoku University
  • 3. National Astronomical Observatory of Japan
  • 4. University of Tokyo

Contributors

Editor:

Description

Young stars such as protostars and pre-main-sequence stars evolve via the interaction with the surrounding accretion disks. It is believed that stellar and disk magnetic fields play important roles in shaping the accretion structure and exchanging the angular momentum between the stars and the disks. However, because of the complexity of gas dynamics around the stars, the star-disk interaction remains poorly understood, which makes the construction of the stellar evolution models difficult. To reveal the interaction processes, we have been performing 3D magnetohydrodynamic simulations of accretion onto a young star with different stellar magnetic fields. In the case of a weakly magnetized, magnetosphere-free star, we found that failed disk wind becomes supersonic, high-latitude accretion flows onto the star (Takasao et al. 2018). This result may explain the reason why Herbig Ae/Be stars show fast accretion. In a different model with stronger disk fields, we showed that the star can produce recurrent explosions via magnetic reconnection (Takasao et al. 2019). We consider that the mechanism is relevant to protostellar flares in class-0/I protostars. In addition to the above two models, we have been investigating the magnetospheric accretion which is very relevant to classical T-Tauri stars. In this talk, we will introduce our 3D modeling and discuss how the star-disk interaction changes depending on the stellar and disk field strengths.

Files

coolstars20.5_takasao_poster_rev01.pdf

Files (2.1 MB)

Name Size Download all
md5:5961253f26bc2265ac0a9ec619994fb6
1.1 MB Preview Download
md5:bcecd69dcc43fc7c7152e4c8ce45846a
962.1 kB Preview Download

Additional details

References

  • Kulkarni, A. K. and Romanova, M. M. (2008). Accretion to magnetized stars through the Rayleigh-Taylor instability: global 3D simulations
  • Takasao, Shinsuke et al. (2018). A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star
  • Takasao, Shinsuke et al. (2019). Giant Protostellar Flares: Accretion-driven Accumulation and Reconnection-driven Ejection of Magnetic Flux in Protostars
  • Cauley, P. Wilson; Johns-Krull, Christopher M. (2014). Diagnosing Mass Flows around Herbig Ae/Be Stars Using the He I λ10830 Line
  • Stone, James M. et al. (2020). The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers