Published February 26, 2021 | Version v1
Poster Open

Accretion in the PDS 70 system

  • 1. University of Michigan
  • 2. Carnegie Institution for Sciences
  • 3. Universidad Nacional Autónoma de México
  • 4. Space Telescope Science Institute
  • 5. Universidad de Guadalajara

Contributors

Editor:

Description

Theoretical studies and simulations suggest that giant planets can create gaps in circumstellar disks around young, pre-main-sequence stars. As a result, the mass accretion rate from the disk onto the star decreases significantly. Here, we evaluate that prediction and its implications by measuring the mass accretion rates onto the star PDS 70 and its proto-planets. We applied magnetospheric models to fit the multi-epoch H-alpha profiles of PDS 70 and the H-alpha fluxes of PDS 70 b/c. We found that the star's mass accretion rate varies with its rotation period, with an average of 1.3x10-10 Msun/yr. The total mass accretion rate onto the planets is only 10% of that of the star. Given the size of the gap in the disk around PDS 70, these estimates of the mass accretion rate are consistent with:  (1) the disk has a high viscosity, or (2) the disk has an inner mass reservoir and a low viscosity. More observations of systems with young, accreting planets are needed to discern between these scenarios.

Files

Thanathibodee_Accretion_in_PDS70.pdf

Files (9.1 MB)

Name Size Download all
md5:9e328fac8b9c5d3b79f28d0ac1f02cb4
8.8 MB Preview Download
md5:5b5dc21a29f7f3eeefc17b5cb24096f6
268.7 kB Preview Download

Additional details

Related works

Is derived from
Journal article: 10.3847/1538-4357/ab77c1 (DOI)
Journal article: 10.3847/1538-4357/ab44c1 (DOI)

References

  • Zhu, Z. et al. 2011, ApJ, 729, 47 DOI:10.1088/0004-637X/729/1/47
  • Bae, J. et al. 2017, ApJ, 850, 201 DOI:10.3847/1538-4357/aa9705
  • Keppler, M. et al. 2018, A&A, 617, A44 DOI:10.1051/0004-6361/201832957
  • Haffert, S. et al. 2019, NatAs, 3, 749 DOI:10.1038/s41550-019-0780-5
  • Hartmann, L. et al. 1994, ApJ, 246, 669 DOI:10.1086/174104
  • Muzerolle, J. et al. 1998, ApJ, 492, 743 DOI:10.1086/305069
  • Muzerolle, J. et al. 2001, ApJ, 550, 944 DOI:10.1086/319779
  • Hartmann, L. et al. 2016, ARA&A, 54, 135 DOI:10.1146/annurev-astro-081915-023347
  • Batygin, K. 2018, AJ, 155, 178 DOI:10.3847/1538-3881/aab54e
  • Rigliaco, E. et al. 2012, A7A, 548, A56 DOI:10.1051/0004-6361/201219832
  • Ingleby, L. et al. 2013, ApJ, 767, 112 DOI:10.1088/0004-637X/767/2/112
  • Natta, A. et al. 2004, A&A, 424, 603 DOI:10.1051/0004-6361:20040356
  • Manara, C. F. et al. 2019, A&A, 631, L2 DOI:10.1051/0004-6361/201936488