Poster Open Access

A Deep Learning Approach to photospheric Parameters of CARMENES Target Stars

Passegger, Vera Maria; Ordieres-Meré, Joaquin; Bello-García, Antonio; Caballero, José Antonio; Schweitzer, Andreas; Amado, Pedro J.; González-Marcos, Ana; Ribas, Ignasi; Reiners, Ansgar; Quirrenbach, Andreas; Sarro, Luis M.; Solano, Enrique; Azzaro, Marco; Bauer, Florian F.; Béjar, Victor J. S.; Cortés-Contreras, Miriam; Dreizler, Stefan; Hatzes, Artie P.; Henning, Thomas; Jeffers, Sandra V.; Kaminski, Adrian; Kürster, Martin; Lafarga, Marina; Marfil, Emilio; Montes, David; Morales, Juan Carlos; Nagel, Evangelos; Tabernero, Hugo M.; Zechmeister, Mathias

Wolk, Scott

We construct an individual convolutional neural network architecture for each of the four stellar parameters effective temperature (Teff), surface gravity (log g), metallicity [M/H], and rotational velocity (v sin i). The networks are trained on synthetic PHOENIX-ACES spectra, showing small training and validation errors. We apply the trained networks to the observed spectra of 283 M dwarfs observed with CARMENES. Although the network models do very well on synthetic spectra, we find large deviations from literature values especially for metallicity, due to the synthetic gap.

Files (3.3 MB)
Name Size
3.3 MB Download
  • Passegger et al. (2020) arXiv:2008.01186

  • Husser et al. (2013) arXiv:1303.5632

  • Passegger et al. (2019) arXiv:1907.00807

  • Maldonado et al. (2015) arXiv:1503.03010

  • Rojas-Ayala et al. (2012) arXiv:1112.4567

  • Gaidos & Mann (2014) arXiv:1406.4071

  • Mann et al. (2015) arXiv:1501.01635

All versions This version
Views 8282
Downloads 5757
Data volume 186.5 MB186.5 MB
Unique views 6464
Unique downloads 5151


Cite as