Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Poster Open Access

A Deep Learning Approach to photospheric Parameters of CARMENES Target Stars

Passegger, Vera Maria; Ordieres-Meré, Joaquin; Bello-García, Antonio; Caballero, José Antonio; Schweitzer, Andreas; Amado, Pedro J.; González-Marcos, Ana; Ribas, Ignasi; Reiners, Ansgar; Quirrenbach, Andreas; Sarro, Luis M.; Solano, Enrique; Azzaro, Marco; Bauer, Florian F.; Béjar, Victor J. S.; Cortés-Contreras, Miriam; Dreizler, Stefan; Hatzes, Artie P.; Henning, Thomas; Jeffers, Sandra V.; Kaminski, Adrian; Kürster, Martin; Lafarga, Marina; Marfil, Emilio; Montes, David; Morales, Juan Carlos; Nagel, Evangelos; Tabernero, Hugo M.; Zechmeister, Mathias

Editor(s)
Wolk, Scott

We construct an individual convolutional neural network architecture for each of the four stellar parameters effective temperature (Teff), surface gravity (log g), metallicity [M/H], and rotational velocity (v sin i). The networks are trained on synthetic PHOENIX-ACES spectra, showing small training and validation errors. We apply the trained networks to the observed spectra of 283 M dwarfs observed with CARMENES. Although the network models do very well on synthetic spectra, we find large deviations from literature values especially for metallicity, due to the synthetic gap.

Files (3.3 MB)
Name Size
Poster_CoolStar_virtualA0.pdf
md5:b35385520b03f4d10a8c45fec1209264
3.3 MB Download
  • Passegger et al. (2020) arXiv:2008.01186

  • Husser et al. (2013) arXiv:1303.5632

  • Passegger et al. (2019) arXiv:1907.00807

  • Maldonado et al. (2015) arXiv:1503.03010

  • Rojas-Ayala et al. (2012) arXiv:1112.4567

  • Gaidos & Mann (2014) arXiv:1406.4071

  • Mann et al. (2015) arXiv:1501.01635

161
106
views
downloads
All versions This version
Views 161161
Downloads 106106
Data volume 346.8 MB346.8 MB
Unique views 136136
Unique downloads 9999

Share

Cite as