Poster Open Access
Passegger, Vera Maria; Ordieres-Meré, Joaquin; Bello-García, Antonio; Caballero, José Antonio; Schweitzer, Andreas; Amado, Pedro J.; González-Marcos, Ana; Ribas, Ignasi; Reiners, Ansgar; Quirrenbach, Andreas; Sarro, Luis M.; Solano, Enrique; Azzaro, Marco; Bauer, Florian F.; Béjar, Victor J. S.; Cortés-Contreras, Miriam; Dreizler, Stefan; Hatzes, Artie P.; Henning, Thomas; Jeffers, Sandra V.; Kaminski, Adrian; Kürster, Martin; Lafarga, Marina; Marfil, Emilio; Montes, David; Morales, Juan Carlos; Nagel, Evangelos; Tabernero, Hugo M.; Zechmeister, Mathias
We construct an individual convolutional neural network architecture for each of the four stellar parameters effective temperature (Teff), surface gravity (log g), metallicity [M/H], and rotational velocity (v sin i). The networks are trained on synthetic PHOENIX-ACES spectra, showing small training and validation errors. We apply the trained networks to the observed spectra of 283 M dwarfs observed with CARMENES. Although the network models do very well on synthetic spectra, we find large deviations from literature values especially for metallicity, due to the synthetic gap.
Name | Size | |
---|---|---|
Poster_CoolStar_virtualA0.pdf
md5:b35385520b03f4d10a8c45fec1209264 |
3.3 MB | Download |
Passegger et al. (2020) arXiv:2008.01186
Husser et al. (2013) arXiv:1303.5632
Passegger et al. (2019) arXiv:1907.00807
Maldonado et al. (2015) arXiv:1503.03010
Rojas-Ayala et al. (2012) arXiv:1112.4567
Gaidos & Mann (2014) arXiv:1406.4071
Mann et al. (2015) arXiv:1501.01635
All versions | This version | |
---|---|---|
Views | 161 | 161 |
Downloads | 106 | 106 |
Data volume | 346.8 MB | 346.8 MB |
Unique views | 136 | 136 |
Unique downloads | 99 | 99 |