Published January 23, 2021 | Version v1
Journal article Open

mRNA Based Vaccine Studies in Infectious Diseases and Current Developments

  • 1. Department of Infectious Disease, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey

Description

Özet

Başlangıçta genetik hastalıkların tedavisinde in-vivo protein ekspresyonu için geliştirilen mRNA teknolojisi, terapötik kanser aşıları yönüne doğru gelişirken, bu aşıların tolere edilebilirliği ve immünojenisitesi ile ilgili ilk veriler bu yeni platformun geleneksel aşı yaklaşımlarının yetersiz kaldığı enfeksiyonlar için koruyucu bağışıklık geliştirilmesinde yeni bir alternatif sistem olabileceği fikrini ortaya çıkarmıştır. mRNA teknolojisi influenza virus, RSV (Respiratory syncytial virus), HIV (Human immunodeficiency virus), CMV (human cytomegalovirus), kuduz, MMLV (moloney murine leukaemia virus), Ebolavirus, insan papilloma virus (HPV), Zika virus, hepatit C virusu (HCV) ve Kırım Kongo Kanamalı Ateş Virusu (KKKAV) gibi farklı virüsler yanında, Streptococcus türü bakteriler ve Toxoplasma gondii gibi paraziter enfeksiyonlara yönelik koruyucu aşı geliştirme çalışmalarında son yıllarda denenen umut verici yeni bir yaklaşım olmuştur. mRNA aşılarının neredeyse standartlaştırılabilir bir platform üzerinde hızlı aşı tasarımına imkan vermesi yanında, ölçeklenebilir üretim kapasitesi bu aşıları yeni ortaya çıkan salgınların kontrol altına alınması ve önlenmesi için bir umut haline getirmiştir. SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) pandemisinde bu özelliği ile öne çıkan mRNA aşıları birçok gelişmiş ülkeden milyarlarca doz aşı talebi almış ve 2020 yılı sonlarından itibaren acil kullanım onayları ile milyonlarca kişiye uygulanmıştır. Replike olabilen mRNA aşı formatlarının çok daha düşük aşı dozlarında bağışık yanıtı uyarabilmesi, dolayısıyla düşük maliyetli erişim imkanı sunması ve mRNA aşılarının konak genomuna entegre olma riski taşımayıp geçici ve kontrol edilebilir bir antijenik uyarı yapması bu yeni aşıların diğer avantajlarıdır. Aşıların zayıf stabilitesi, immünojenisitelerinin dengelenmesi, bazı aşılarda soğuk zincir koşullarında dağıtım gereksinimi, bazı enfeksiyöz etkenler için istenilen düzeyde koruyuculuk elde edilememesi ve uzun dönem yan etkileri ile ilgili verilerin sınırlı olması gibi halen çözüm bekleyen veya geliştirilmesi gereken bazı zorluklar da bulunmaktadır. Kapsamlı klinik çalışmaların sonuçları ile elde edilecek güvenlik kanıtlarından sonra yeni teknik gelişmelerin de katkısı ile mRNA temelli aşıların gelecekte daha yaygın olarak kullanılması beklenmektedir. Bu makalede enfeksiyon hastalıklarına yönelik geliştirilen profilaktik mRNA aşı çalışmalarından elde edilen sonuçların kısa bir özeti sunulmuştur.

Abstract

While mRNA technology, which was originally developed for in-vivo protein expression in the treatment of genetic diseases, is developing towards therapeutic cancer vaccines, initial data on the tolerability and immunogenicity of these vaccines led to the idea that this new platform could be a new alternative system for developing protective immunity for infections where conventional vaccine approaches fall short. mRNA technology has been a promising new approach that has been tried in recent years in preventive vaccine development researches for different viruses such as influenza virus, RSV (Respiratory syncytial virus), HIV (Human immunodeficiency virus), CMV (human cytomegalovirus), rabies virus, MMLV (moloney murine leukemia virus), Ebolavirus, human papilloma virus (HPV), Zika virus, hepatitis C virus (HCV ) and Crimean Congo Hemorrhagic Fever Virus (CCHFV), as well as bacterial and parasitic infections such as Streptococcus spp. and Toxoplasma gondii. mRNA vaccines allow rapid vaccine design on a practically standardizable platform, in addition, scalable production capacity has become these vaccines a hope for containment and prevention of emerging epidemics. In the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) pandemic, mRNA vaccines, which stand out with this feature, have received billions of doses of vaccine requests from many developed countries and have been applied with emergency use approvals since the end of 2020 to millions of people. Other advantages of these new vaccines are that replicable mRNA vaccine formats can induce an immune response at much lower vaccine doses, thus offering low-cost access, and that mRNA vaccines do not have the risk of integrating into the host genome and provide a temporary and controllable antigenic stimulation. There are also some challenges that still need to be resolved or need to be developed, such as the weak stability of vaccines, balancing their immunogenicity, the need for distribution in cold chain conditions for some vaccines, the inability to achieve the desired protection levels for some infectious agents and limited data on long-term side effects. After the safety evidence to be obtained with the results of extensive clinical studies, it is expected that mRNA-based vaccines will be used more widely in the future with the contribution of new technical developments. A summary of the results of the prophylactic mRNA vaccine studies that are being developed for infectious diseases is provided in this article.

Notes

Enfeksiyon Hastalıklarında mRNA Temelli Aşı Çalışmaları ve Güncel Gelişmeler

Files

jmvi.2020.20.pdf

Files (345.5 kB)

Name Size Download all
md5:e5bfdb0fd5cb008adec177b1c3476a76
345.5 kB Preview Download

Additional details

References

  • 1. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
  • 2. Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, et al. Rapidly produced SAM(®) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2013; 2(8): e52.
  • 3. Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993; 23(7): 1719-22.
  • 4. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012; 30(12): 1210-6.
  • 5. Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol Ther 2017; 25(6): 1316-27.
  • 6. Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017; 390(10101): 1511-20.
  • 7. Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M, et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 2001; 183(9): 1395-8.
  • 8. Kis Z, Kontoravdi C, Shattock R, Shah N. Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand. Vaccines (Basel) 2020; 9(1): E3.
  • 9. Gandhi RT, Kwon DS, Macklin EA, Shopis JR, McLean AP, McBrine N, et al. Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial. J Acquir Immune Defic Syndr 2016; 71(3): 246-53.
  • 10. Ulmer JB, Geall AJ. Recent innovations in mRNA vaccines. Curr Opin Immunol 2016; 41: 18-22.
  • 11. Démoulins T, Milona P, Englezou PC, Ebensen T, Schulze K, Suter R, et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 2016; 12(3): 711-22.
  • 12. McCullough KC, Bassi I, Milona P, Suter R, Thomann-Harwood L, Englezou P, et al. Self-replicating Replicon-RNA Delivery to Dendritic Cells by Chitosan-nanoparticles for Translation In Vitro and In Vivo. Mol Ther Nucleic Acids 2014; 3(7): e173.
  • 13. Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A 2016; 113(29): E4133-42.
  • 14. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396-401.
  • 15. Magini D, Giovani C, Mangiavacchi S, Maccari S, Cecchi R, Ulmer JB, et al. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One 2016; 11(8): e0161193.
  • 16. Brazzoli M, Magini D, Bonci A, Buccato S, Giovani C, Kratzer R, et al. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin. J Virol 2015; 90(1): 332-44.
  • 17. Feldman RA, Fuhr R, Smolenov I, Mick Ribeiro A, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019; 37(25): 3326-34.
  • 18. Van Gulck E, Vlieghe E, Vekemans M, Van Tendeloo VF, Van De Velde A, Smits E, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 2012; 26(4): F1-12.
  • 19. Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 2010; 134(2): 140-7.
  • 20. Pollard C, Rejman J, De Haes W, Verrier B, Van Gulck E, Naessens T, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 2013; 21(1): 251-9.
  • 21. Zhao M, Li M, Zhang Z, Gong T, Sun X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv 2016; 23(7): 2596-607.
  • 22. Li M, Zhao M, Fu Y, Li Y, Gong T, Zhang Z, et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release 2016; 228: 9-19.
  • 23. Leal L, Guardo AC, Morón-López S, Salgado M, Mothe B, Heirman C, et al; iHIVARNA consortium. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS 2018; 32(17): 2533-45.
  • 24. Gay CL, Kuruc JD, Falcinelli SD, Warren JA, Reifeis SA, Kirchherr JL, et al. Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 Infection. Sci Rep 2020; 10(1): 5134.
  • 25. Şahiner F. Konjenital Sitomegalovirüs Enfeksiyonlarının Tanı ve Yönetiminde Güncel Yaklaşımlar ve Türkiye'deki Durum. Mikrobiyol Bul 2020; 54(1): 171-90.
  • 26. Koenig J, Theobald SJ, Stripecke R. Modeling Human Cytomegalovirus in Humanized Mice for Vaccine Testing. Vaccines (Basel) 2020; 8(1): 89.
  • 27. John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018; 36(12): 1689-99.
  • 28. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362(9393): 1375-7.
  • 29. Feuchtinger T, Opherk K, Bicanic O, Schumm M, Grigoleit GU, Hamprecht K, et al. Dendritic cell vaccination in an allogeneic stem cell recipient receiving a transplant from a human cytomegalovirus (HCMV)-seronegative donor: induction of a HCMV-specific T(helper) cell response. Cytotherapy 2010; 12(7): 945-50.
  • 30. Van Craenenbroeck AH, Smits EL, Anguille S, Van de Velde A, Stein B, Braeckman T, et al. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation 2015; 99(1): 120-7.
  • 31. National Institutes of Health (NIH), New York, USA. National Library of Medicine (NLM); ClinicalTrials.gov. Available at: https://www.clinicaltrials.gov/ [Accessed December 27, 2020].
  • 32. Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, et al. An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs. PLoS Negl Trop Dis 2016; 10(6): e0004746.
  • 33. Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today 2019; 28: 100766.
  • 34. CureVac N.V., Tübingen, Germany. CureVac Announces Positive Results in Low Dose – 1 µg – Rabies Vaccine Clinical Phase 1 Study. Available at: https://www.curevac.com/en/2020/01/07/curevac-announces-positive-results-in-low-dose-1-%C2%B5g-rabies-vaccine-clinical-phase-1-study/ [Accessed December 29, 2020].
  • 35. Şahiner F, Tekin K, Gümral R. Zika Virus: Current Status, Protective Vaccination Studies, and Antiviral Treatment Alternatives. Türk Mikrobiyoloji Cemiy Derg 2017; 47(3): 97-105.
  • 36. Chahal JS, Fang T, Woodham AW, Khan OF, Ling J, Anderson DG, et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep 2017; 7(1): 252.
  • 37. Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017; 543(7644): 248-51.
  • 38. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017; 168(6): 1114-25.e10.
  • 39. Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, et al. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell 2017; 170(2): 273-83.e12.
  • 40. Martin C, Lowery D. mRNA vaccines: intellectual property landscape. Nat Rev Drug Discov 2020; 19(9): 578.
  • 41. Zhou P, Li Z, Xie L, An D, Fan Y, Wang X, et al. Research progress and challenges to coronavirus vaccine development. J Med Virol 2021; 93(2): 741-4.
  • 42. He Y, Li J, Heck S, Lustigman S, Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol 2006; 80(12): 5757-67.
  • 43. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020; NEJMoa2034577.
  • 44. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2020; [Online ahead of print].
  • 45. World Health Organization (WHO), Geneva, Switzerland. Draft landscape of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines [Accessed December 28, 2020].
  • 46. Anadolu Ajansı, Ankara, Türkiye. Selçuk Üniversitesi'nde geliştirilen Türkiye'nin ilk mRNA aşısının yazın kullanıma sunulması planlanıyor. Available at: https://www.aa.com.tr/tr/koronavirus/selcuk-universitesinde-gelistirilen-turkiyenin-ilk-mrna-asisinin-yazin-kullanima-sunulmasi-planlaniyor/2105643 [Accessed December 28, 2020].
  • 47. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Moderna COVID-19 Vaccine EUA Letter of Authorization. Available at: https://www.fda.gov/media/144636/download [Accessed December 29, 2020].
  • 48. Mahase E. Covid-19: UK approves Pfizer and BioNTech vaccine with rollout due to start next week. BMJ 2020; 371: m4714.
  • 49. European Medicines Agency (EMA), Amsterdam, Netherlands. EMA recommends first COVID-19 vaccine for authorisation in the EU. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty [Accessed December 29, 2020].
  • 50. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Pfizer COVID-19 Vaccine EUA Letter of Authorization. Available at: https://www.fda.gov/media/144412/download [Accessed December 29, 2020].
  • 51. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Vaccines and Related Biological Products Advisory Committee December 17, 2020 Meeting Presentation - FDA Review of Efficacy and Safety of Moderna COVID-19 Vaccine Emergency Use Authorization Request. Available at: https://www.fda.gov/media/144585/download [Accessed December 29, 2020].
  • 52. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Vaccines and Related Biological Products Advisory Committee Meeting December 10, 2020 FDA Briefing Document Pfizer-BioNTech COVID-19 Vaccine. Available at: https://www.fda.gov/media/144245/download [Accessed December 29, 2020].
  • 53. Aligholipour Farzani T, Földes K, Ergünay K, Gurdal H, Bastug A, Ozkul A. Immunological Analysis of a CCHFV mRNA Vaccine Candidate in Mouse Models. Vaccines (Basel) 2019; 7(3): 115.
  • 54. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A 2012; 109(36): 14604-9.
  • 55. Maruggi G, Chiarot E, Giovani C, Buccato S, Bonacci S, Frigimelica E, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 2017; 35(2): 361-8.
  • 56. Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines (Basel) 2019; 7(4): 122.
  • 57. Luo F, Zheng L, Hu Y, Liu S, Wang Y, Xiong Z, et al. Induction of Protective Immunity against Toxoplasma gondii in Mice by Nucleoside Triphosphate Hydrolase-II (NTPase-II) Self-amplifying RNA Vaccine Encapsulated in Lipid Nanoparticle (LNP). Front Microbiol 2017; 8: 605.
  • 58. Duthie MS, Van Hoeven N, MacMillen Z, Picone A, Mohamath R, Erasmus J, et al. Heterologous Immunization With Defined RNA and Subunit Vaccines Enhances T Cell Responses That Protect Against Leishmania donovani. Front Immunol 2018; 9: 2420.
  • 59. Baeza Garcia A, Siu E, Sun T, Exler V, Brito L, Hekele A, et al. Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection. Nat Commun 2018; 9(1): 2714.