Published January 21, 2021 | Version v1
Journal article Open

mRNA Based Therapeutic Strategies in Cancer Immunotherapy

  • 1. Department of Pediatrics, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey

Description

Özet

Haberci RNA (messenger RNA, mRNA), mikroRNA ve küçük engelleyici RNA (small interfering RNA, siRNA) temelli terapötik yaklaşımlar fizyolojik veya patolojik süreçlere hücresel düzeyde müdahaleyi mümkün kılan yeni bir tedavi sınıfıdır. RNA temelli teknolojinin kullanıldığı bir siRNA sisteminin 2018 yılında kullanım onayı almasından kısa bir süre sonra patlak veren SARS-CoV-2 pandemisinde çok sayıda mRNA temelli aşı platformunun klinik öncesi ve klinik çalışma aşamalarına gelmesi ve 2020 Aralık ayı içerisinde iki farklı mRNA aşısının birçok gelişmiş ülkede acil kullanım onayları alması bu yeni teknolojinin önündeki en büyük engellerden biri olan güvenlik kaygılarını önemli ölçüde ortadan kaldırmıştır. Enfeksiyöz etkenlere karşı geliştirilen aşılardan farklı olarak, kanser immünoterapisi “mRNA temelli aşılama prensibi ile otolog dentritik hücrelerin kullanıldığı hücresel tedavi yaklaşımının” kombine edilmesini içerir. Antikanser mRNA aşıları olarak da adlandırılan bu sistem bilinen aşı yaklaşımlarının temel hedefi olan bağışıklık sistemini uyarma ve aktive etme prensibi yanında bazı genlerin baskılanması gibi farklı terapötik amaçları da içeren daha karmaşık bir tedavi yaklaşımıdır. Bu teknolojinin başta malign melanom ve glioblastoma olmak üzere çeşitli kanserlere yönelik tedavi amaçlı kullanımının yaygınlaşmasında “immün sistemin temel fonksiyonların gün geçtikçe daha iyi anlaşılması, yüksek kapasiteli dizi analizi sistemleri gibi moleküler biyolojideki teknik ilerlemeler ve genetik mühendisliği alanındaki yeni gelişmelerin” önemli katkıları olmuştur. Bu makalede mRNA temelli kanser immünoterapisinin temel prensipleri ele alınmış ve kişiselleştirilmiş kanser immünoterapisi gibi bu alandaki yeni gelişmelere değinilmiştir.

Abstract

Therapeutic approaches based on messenger RNA (messenger RNA, mRNA), microRNA and small interfering RNA (siRNA) are a new class of therapies that enable intervention in physiological or pathological processes at the cellular level. In the SARS-CoV-2 pandemic, which broke out shortly after an siRNA system using RNA-based technology was approved for clinical use in 2018, numerous mRNA-based vaccine platforms reached in pre-clinical and clinical trial stages and in December 2020, two different mRNA vaccines were approved for emergency use in many developed countries. Thus, safety concerns, which are one of the biggest obstacles to this new technology, have been removed to a great extent. Unlike vaccines developed against infectious agents, cancer immunotherapy involves the combination of "mRNA-based vaccination principle and cellular therapy approach using autologous dendritic cells". This system, also called anticancer mRNA vaccines, is a more complex treatment approach that includes different therapeutic purposes such as suppression of some genes as well as the principle of stimulating and activating the immune system, which is the main target of known vaccine approaches. “Better understanding of the basic functions of the immune system, technical advances in molecular biology such as high-capacity sequence analysis systems and new developments in the field of genetic engineering” have contributed significantly to the widespread use of this technology for therapeutic purposes for various cancers, especially malignant melanoma and glioblastoma. In this article, basic principles of mRNA-based cancer immunotherapy are discussed and new developments in this field such as personalized cancer immunotherapy are mentioned.

Notes

Kanser İmmünoterapisinde mRNA Temelli Terapötik Stratejiler

Files

jmvi.2020.19.pdf

Files (530.8 kB)

Name Size Download all
md5:d8b6fdceae3494698178c7bd999e97c3
530.8 kB Preview Download

Additional details

References

  • 1. Lin YX, Wang Y, Blake S, Yu M, Mei L, Wang H, et al. RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics 2020; 10(1): 281-99.
  • 2. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
  • 3. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137(5): 1142-62.
  • 4. Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today 2019; 28: 100766.
  • 5. National Institutes of Health (NIH), New York, USA. National Library of Medicine (NLM); ClinicalTrials.gov. Available at: https://www.clinicaltrials.gov/ [Accessed December 23, 2020].
  • 6. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184(2): 465-72.
  • 7. Wilgenhof S, Van Nuffel AMT, Benteyn D, Corthals J, Aerts C, Heirman C, et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 2013; 24(10): 2686-93.
  • 8. Bol KF, Figdor CG, Aarntzen EH, Welzen ME, van Rossum MM, Blokx WA, et al. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology 2015; 4(8): e1019197.
  • 9. Van Lint S, Renmans D, Broos K, Dewitte H, Lentacker I, Heirman C, et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines 2015; 14(2): 235-51.
  • 10. Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2015; 14(2): 161-76.
  • 11. Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, et al. Phase II Study of Autologous Monocyte-Derived mRNA Electroporated Dendritic Cells (TriMixDC-MEL) Plus Ipilimumab in Patients With Pretreated Advanced Melanoma. J Clin Oncol 2016; 34(12): 1330-8.
  • 12. Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010; 70(22): 9031-40.
  • 13. Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Türeci Ö, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011; 18(7): 702-8.
  • 14. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hapcimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999; 10(16): 2719-24.
  • 15. Bialkowski L, van Weijnen A, Van der Jeught K, Renmans D, Daszkiewicz L, Heirman C, et al. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Sci Rep 2016; 6: 22509.
  • 16. Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, Rammensee HG, et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 2006; 36(10): 2807-16.
  • 17. Van der Jeught K, Joe PT, Bialkowski L, Heirman C, Daszkiewicz L, Liechtenstein T, et al. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 2014; 5(20): 10100-13.
  • 18. Van Lint S, Renmans D, Broos K, Goethals L, Maenhout S, Benteyn D, et al. Intratumoral Delivery of TriMix mRNA Results in T-cell Activation by Cross-Presenting Dendritic Cells. Cancer Immunol Res 2016; 4(2): 146-56.
  • 19. Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel) 2020; 8(4): 776.
  • 20. Türeci Ö, Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines. Clin Cancer Res 2016; 22(8): 1885-96.
  • 21. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015; 520(7549): 692-6.
  • 22. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017; 547(7662): 222-6.
  • 23. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017; 547(7662): 217-21.
  • 24. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396-401.
  • 25. Phua KK, Staats HF, Leong KW, Nair SK. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep 2014; 4: 5128.