Published January 15, 2021 | Version v1
Journal article Open

In-vivo Delivery of mRNA-Based Vaccines and Administration Routes

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey

Description

Özet

Messenger (haberci) ribonükleik asit (mRNA) moleküllerinin aşı veya genetik tedavi amaçlı kullanımında protein ekspresyonunun etkinliğini belirleyen önemli parametrelerden biri bu moleküllerin hücre içerisine iletilmesinde başvurulan yaklaşımlardır. Viral vektör aracılı olmayan genetik bilgi transferi olarak da tanımlanan mRNA temelli aşı sistemlerinin hücrelere verimli bir şekilde iletilebilmesi için birçok farklı yaklaşım denenmiştir. Bu yöntemlerden biri mRNA moleküllerinin herhangi bir taşıyıcı molekül olmaksızın çıplak olarak dokulara doğrudan verilmesidir. Çıplak mRNA hücre dışı RNazlar (extracellular RNases) tarafından hızla yıkılır ve hücre içerisine verimli bir şekilde alınamaz. Bu nedenle, mRNA'nın hücreye alınmasını kolaylaştıran çeşitli biyokimyasal (protamin ve penetre edici peptitler gibi) ve fiziksel-mekanik yöntemler (elektroporasyon ve gen tabancası gibi) geliştirilmiştir. Öncelikle terapötik kanser aşılarının iletiminde başvurulan farklı bir yaklaşım ise otolog dendritik hücrelere (DH) ex-vivo mRNA yüklenmesi ve transfekte edilen DH’lerin tekrar dokulara enjekte edilmesidir. Ölçeklenebilir üretim için ideal bir yaklaşım olmayan bu sistem salgınlara müdahalede veya toplumsal bağışıklamada yetersiz kalacağı için bu stratejiye alternatif olan üçüncü bir mRNA iletim sistemi olarak nanopartikül taşıyıcılar geliştirilmiştir. Lipit nanopartiküller, polimerler ve katyonik nano-emülsiyonlar gibi farklı taşıyıcı sistemleri içeren bu nanopartiküller protamin, kolesterol ve polietilenglikol gibi çeşitli moleküllerin eklenmesi ile modifiye edilebilmektedir. Aşılama ile ulaşılmak istenilen hedefe göre mRNA temelli sistemler intradermal, subkutan, intranazal, intrasplenik, intravenöz ve intramusküler enjeksiyon gibi çeşitli yollarla doku-hedefli veya sistemik olarak verilebilmektedir. Bu derleme makalede mRNA bazlı aşıların hücrelere ve dokulara verimli bir şekilde in-vivo iletilmesi için kullanılan tekniklerin bir özeti sunulmuştur.

Abstract

One of the important parameters determining the efficiency of protein expression in the use of messenger ribonucleic acid (mRNA) molecules for vaccine or genetic therapy is the approaches used in the delivery of these molecules into the cell. Many different approaches, also defined as non-viral vector-mediated gene transfer, have been tried in order to efficient delivery of mRNA-based vaccine systems to cells. One of these methods is delivery of naked mRNA molecules directly to tissues without any carrier molecules. Naked mRNA is rapidly degraded by extracellular RNases and cannot be efficiently taken into the cell. Therefore, various biochemical (such as protamine and penetrating peptides) and physical-mechanical methods (such as electroporation and gene gun) have been developed that facilitate the uptake of mRNA into the cell. A different approach, which is primarily used in the delivery of therapeutic cancer vaccines, is ex-vivo loading of mRNA into autologous dendritic cells (DCs) and re-injection of transfected DCs into tissues. Since this system, which is not an ideal approach for scalable production, will be inadequate in response to epidemics or in community immunization, nanoparticle carriers have been developed as a third mRNA delivery system as an alternative to this strategy. These carrier systems, include different designs such as lipid nanoparticles, polymers and cationic nano-emulsions, can be modified adding a variety of molecules such as protamine, cholesterol and polyethyleneglycol. mRNA based systems can be administered systemically or tissue-targeted by various means such as intradermal, subcutaneous, intranasal, intrasplenic, intramuscular and intravenous injections, depending on the target to be achieved by vaccinating. A summary of the techniques used for efficient in-vivo delivery of mRNA-based vaccines to cells and tissues was presented in this review article.

Notes

mRNA Temelli Aşıların İn-vivo İletimi ve Uygulama Yolları

Files

jmvi.2020.17.pdf

Files (872.1 kB)

Name Size Download all
md5:097eee4ea74a3cf19a1d857a83840797
872.1 kB Preview Download

Additional details

References

  • 1. Blakney AK, Deletic P, McKay PF, Bouton CR, Ashford M, Shattock RJ, et al. Effect of complexing lipids on cellular uptake and expression of messenger RNA in human skin explants. J Control Release 2020: S0168-3659(20)30683-0. [Epub ahead of print]
  • 2. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
  • 3. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol 2020; 65: 14-20.
  • 4. Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today 2019; 28: 100766.
  • 5. Lin YX, Wang Y, Blake S, Yu M, Mei L, Wang H, et al. RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics 2020; 10(1): 281-99.
  • 6. Batty CJ, Heise MT, Bachelder EM, Ainslie KM. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Adv Drug Deliv Rev 2020; 169: 168-89.
  • 7. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Proprietary name: OnpattroTM (patisiran). Center For Drug Evaluation and Research Application Number: 210922Orig1s000. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000MultiR.pdf [Accessed December 29, 2020].
  • 8. Haabeth OAW, Blake TR, McKinlay CJ, Waymouth RM, Wender PA, Levy R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci U S A 2018; 115(39): E9153-E9161.
  • 9. Gu YZ, Zhao X, Song XR. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol Sin 2020; 41(7): 959-69..
  • 10. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109(3): 409-17.
  • 11. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 2003; 177(4): 437-47.
  • 12. Qiu P, Ziegelhoffer P, Sun J, Yang NS. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 1996; 3(3): 262-8.
  • 13. Jarzebska NT, Lauchli S, Iselin C, French LE, Johansen P, Guenova E, et al. Functional differences between protamine preparations for the transfection of mRNA. Drug Deliv 2020; 27(1): 1231-5.
  • 14. Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother 2013; 9(10): 2263-76.
  • 15. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396-401.
  • 16. Udhayakumar VK, De Beuckelaer A, McCaffrey J, McCrudden CM, Kirschman JL, Vanover D, et al. Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide. Adv Healthc Mater 2017; 6(13).
  • 17. Granstein RD, Ding W, Ozawa H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 2000; 114(4): 632-6.
  • 18. Ulmer JB, Geall AJ. Recent innovations in mRNA vaccines. Curr Opin Immunol 2016; 41: 18-22.
  • 19. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020; NEJMoa2034577.
  • 20. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2020; [Online ahead of print].