Journal article Open Access

Can Facial Masking Slow Down the Spread of SARS-CoV-2 by a Variolation-like Effect?

Şahiner, Fatih

Abstract

Numerous studies have been published providing evidence that the universal use of masks reduces the spread of SARS-CoV-2 infections indoors, in hospitals, and public places. Studies in experimental animal models for SARS-CoV-2 infections have shown that more severe lung abnormalities develop in animals infected with high doses of the virus. From this point of view, even if the use of a mask does not absolutely protect from infection transmission, it can contribute to the mild course of possible infections through low viral load exposure. However, in some published studies, it was revealed that antibodies against the virus decreased more rapidly in people who had the infection asymptomatically. In addition, cases of re-infection with different variants of the virus as soon as several months after recovery from the first infection have recently been reported. Considering that coronaviruses generally cause infections with low protective immunity, until a protective vaccine is developed, continuing to use masks seems to be an effective measure that can reduce social spreading of the infection and give protection from serious infections at the individual level, especially in indoor and crowded environments where the transmission risk is high, including for people recovering from infection. As a result, even if the mask does not retain 100% of viruses, it reduces the risk of severe infection because it reduces the viral load to a large degree. In fact, the expected effect of the eagerly anticipated vaccine is nothing more than this.

Özet

Universal maske kullanımının kapalı alanlarda, hastanelerde ve halka açık alanlarda SARS-CoV-2 enfeksiyonlarının yayılımını azalttığına dair kanıtlar içeren çok sayıda araştırma yayımlanmıştır. SARS-CoV-2 enfeksiyonları için deneysel hayvan modellerinde yapılan çalışmalarda ise yüksek doz virüsle enfekte edilen hayvanlarda daha ciddi akciğer anormalliklerinin geliştiği gösterildi. Bu noktadan maske kullanımı enfeksiyon bulaşını mutlak bir şekilde korumasa bile, düşük viral yük maruziyeti ile olası enfeksiyonların hafif geçirilmesine katkıda bulunabilir. Bununla beraber yayımlanan bazı çalışmalarda enfeksiyonu asemptomatik olarak geçiren kişilerde virüse karşı oluşan antikorların daha hızlı düşüş gösterdiği ortaya kondu. Ayrıca, yakın zamanda ilk enfeksiyondan iyileştikten birkaç ay gibi kısa bir süre sonra virüsün farklı varyantları ile enfeksiyona ikinci kez yakalanan olgular bildirildi. Koronavirusların genel olarak düşük koruyucu bağışıklık bırakan enfeksiyonlara neden olduğu dikkate alındığında, koruyucu bir aşı geliştirilinceye kadar; enfeksiyonu geçiren ve iyileşen kişiler de dahil olmak üzere, bulaş riskinin yüksek olduğu kapalı ve kalabalık ortamlar başta olmak üzere, maske kullanımına devam etmek enfeksiyonun toplumsal yayılımını ve bireysel düzeyde de ciddi seyirli enfeksiyonlardan korunmayı sağlayabilecek etkili bir önlem gibi gözüküyor. Sonuç olarak, maske virüs geçişini %100 engellemese bile viral yükü çok azalttığı için ciddi enfeksiyon riskini azaltır. Heyecanla yolu gözlenen aşından beklenen etki de bundan başka bir şey değil aslında.

Maske Kullanımı Variyolasyon Benzeri Bir Etki ile SARS-CoV-2 Yayılımını Yavaşlatabilir mi?
Files (507.0 kB)
Name Size
jmvi.2020.10.pdf
md5:a1855b6f51386a4bd4bcee6a6869f72b
507.0 kB Download
  • 1. Yazdanpanah Y, De Carli G, Migueres B, Lot F, Campins M, Colombo C, et al. Risk factors for hepatitis C virus transmission to health care workers after occupational exposure: a European case-control study. Clin Infect Dis 2005; 41(10): 1423-30.

  • 2. Dietrich U. Advances in Antibody-Based HIV-1 Vaccines Development. Vaccines (Basel). 2020; 8(1): 44.

  • 3. Yezli S, Otter JA. Minimum Infective Dose of the Major Human Respiratory and Enteric Viruses Transmitted Through Food and the Environment. Food Environ Virol 2011; 3(1): 1-30.

  • 4. Karimzadeh S, Bhopal R, Nguyen Tien H. Review of Infective Dose, Routes of Transmission, and Outcome of COVID-19 Caused by the SARS-CoV-2 Virus: Comparison with Other Respiratory Viruses. Preprints 2020; 2020070613.

  • 5. Paulo AC, Correia-Neves M, Domingos T, Murta AG, Pedrosa J. Influenza infectious dose may explain the high mortality of the second and third wave of 1918-1919 influenza pandemic. PLoS One 2010; 5(7): e11655.

  • 6. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 2020; 117(28): 16587-95.

  • 7. Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Recommendation Regarding the Use of Cloth Face Coverings. 3 April 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-facecover.html [Accessed April 9, 2020].

  • 8. Gandhi M, Rutherford GW. Facial Masking for Covid-19 - Potential for "Variolation" as We Await a Vaccine. N Engl J Med 2020; 10.1056/NEJMp2026913.

  • 9. Střížová Z, Bartůňková J, Smrž D. Can wearing face masks in public affect transmission route and viral load in COVID-19?. Cent Eur J Public Health 2020; 28(2): 161-2.

  • 10. Tirupathi R, Bharathidasan K, Palabindala V, Salim SA, Al-Tawfiq JA. Comprehensive review of mask utility and challenges during the COVID-19 pandemic. Infez Med 2020; 28(suppl 1): 57-63.

  • 11. To KK, Hung IF, Ip JD, Chu AW, Chan WM, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis 2020; ciaa1275.

  • 12. Tillett R, Sevinsky J, Hartley P, Kerwin H, Crawford N, Gorzalski A, et al. Genomic Evidence for a Case of Reinfection with SARS-CoV-2. SSRN 2020; 3680955.

  • 13. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26(8): 1200-4.

  • 14. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med 2020; 10.1056/NEJMoa2026116. [published online ahead of print]

  • 15. Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhang LY, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis 2007; 13(10): 1562-4.

  • 16. Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol 2020; 20(9): 529-36.

  • 17. Ozcelik F, Tanoglu A, Çıracı MZ, Ozcelik IK. Use of Immune Modulator Interferon-Gamma to Support Combating COVID-19 Pandemic. International Journal of Coronaviruses 2020; 1(1): 1-15.

  • 18. Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 2020; 53(2): 248-63.

  • 19. Cohen J. Bioterrorism. Smallpox vaccinations: how much protection remains?. Science 2001; 294(5544): 985.

  • 20. Behbehani AM. The smallpox story: life and death of an old disease. Microbiol Rev 1983; 47(4): 455-509.

  • 21. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Coronavirus (COVID-19) Update: FDA Takes Action to Help Facilitate Timely Development of Safe, Effective COVID-19 Vaccines. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-takes-action-help-facilitate-timely-development-safe-effective-covid [Accessed August 29, 2020].

  • 22. Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156(2): 418-30.

  • 23. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. JAMA 2020; 324(7): 703-4.

75
75
views
downloads
Views 75
Downloads 75
Data volume 37.2 MB
Unique views 66
Unique downloads 70

Share

Cite as