Published July 6, 2020 | Version v1
Journal article Open

PCR Inhibitors: Sources, Inhibition Mechanisms and Control

  • 1. Department of Medical Microbiology, Gulhane Training and Research Hospital, Ankara, Turkey

Description

Özet

Polimeraz Zincir Reaksiyonu (Polymerase Chain Reaction, PCR) temelli testlerin ilk örnekleri ve denemeleri üzerinden 40 yıla yakın bir zaman geçti. Bu süreçte PCR temelli moleküler testler gıda güvenliği, adli incelemeler, çevresel örneklerin incelenmesi, rekombinan gen teknolojisi, insan-hayvan-bitki-mikroorganizma genetiği ve immünoloji gibi alanlarda yaygın olarak kullanıldığı gibi en önemli kullanım alanlarından biri de enfeksiyon hastalıklarının tanısı ve takibi olmuştur. 2020 yılının ilk aylarından itibaren tüm dünyayı etkisi altına alan SARS-CoV-2 pandemisi ile mücadelede ülkelerin günlük test kapasiteleri ön plana çıkmış ve bu kapasitenin bazı ülkelerin salgın yönetimindeki başarısı üzerinde önemli etkileri olduğu üzerinde durulmuştur. Bu süreçte kısa bir zaman içerisinde çok sayıda kullanıcı tasarımlı (in-house) ve ticari SARS-CoV-2 RNA testi dizayn edilirken, PCR temelli tanı testleri belki de tarihte hiç olmadığı kadar yoğun bir şekilde kullanılmıştır. Türkiye’nin de dahil olduğu gelişmiş sağlık altyapısına sahip birçok ülkede bu testlerin kullanım onayı, tedarik ve pazarlama süreçleri sıkı denetimlere tabi tutulmuştur. Bu makalede çevresel (kanalizasyon suları, çevresel yüzeyler, hava örneklemeleri ve gıdalar) ve biyolojik örneklerde (hayvan örnekleri, hücre kültürleri, insanlardan alınan kan, solunum yolu, idrar, doku ve dışkı örnekleri gibi klinik örnekler) yapılan PCR testleri için önemli bir problem olan ve yanlış negatif sonuçların önemli bir nedeni olan inhibitör maddelere dikkat çekmek amaçlanmıştır. Makalede ayrıca inhibitör maddelerin olumsuz etkilerini ortadan kaldırmak için geliştirilen çeşitli önlemler ve inhibisyon kontrolünün önemi üzerinde durulmuştur.

Abstract

Nearly 40 years have passed since the first trials and prototypes of Polymerase Chain Reaction (PCR) based tests. In this period, PCR-based molecular tests have been widely used in the fields of food safety, forensic examinations, examination of environmental samples, recombinant gene technology, human-animal-plant-microorganism genetics, and immunology, as well as in diagnosis and monitoring of infectious diseases. In the fight against the SARS-CoV-2 pandemic, which has globally impacted the world since the first months of 2020, countries' daily testing capacities have gained importance and it was emphasized that this capacity had important effects on the success of some countries in epidemic management. In this process, while many in-house and commercial SARS-CoV-2 RNA tests were designed in a short time, PCR based diagnostic tests were used more extensively than ever before. The usage approval, procurement and marketing processes of these tests have been subjected to strict inspections in many countries, including Turkey, with advanced health infrastructure. In this article we aimed to draw attention to inhibitory substances that are a major cause of false negative results in PCR assays carried out in environmental (sewage waters, environmental surfaces, air samples and foods) and biological samples (clinical samples such as animal samples, cell cultures, blood samples from human, respiratory tract, urine, tissue and feces) in this article. The article also focused on various measures taken to eliminate the negative effects of inhibitory substances and the importance of inhibition control.

Notes

PCR İnhibitörleri: Kaynakları, İnhibisyon Mekanizmaları ve Kontrol

Files

jmvi.2020.8.pdf

Files (305.8 kB)

Name Size Download all
md5:630c102574c4802ff2c899ee9f04f0bd
305.8 kB Preview Download

Additional details

References

  • 1. Rådström P, Knutsson R, Wolffs P, Dahlenborg M, Löfström C. Pre-PCR Processing of Samples. In: Sachse K, Frey J (eds), PCR Detection of Microbial Pathogens: Methods and Protocols. 2003, Humana Press Inc, Totowa, NJ, USA. pp:31-50.
  • 2. Lübeck PS, Hoorfar J. PCR Technology and Applications to Zoonotic Food-Borne Bacterial Pathogens. In: Sachse K, Frey J (eds), PCR Detection of Microbial Pathogens: Methods and Protocols. 2003, Humana Press Inc, Totowa, NJ, USA. pp:65-86.
  • 3. Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 2020; 412(9): 2009-23.
  • 4. Lantz PG, Abu al-Soud W, Knutsson R, Hahn-Hägerdal B, Rådström P. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples. Biotechnol Annu Rev 2000; 5: 87-130.
  • 5. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997; 63(10): 3741-51.
  • 6. Al-Soud WA, Jönsson LJ, Rådström P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 2000; 38(1): 345-50.
  • 7. Al-Soud WA, Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 2001; 39(2): 485-93.
  • 8. Al-Soud WA, Rådström P. Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 1998; 64(10): 3748-53.
  • 9. Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 2004; 26(2): 133-46.
  • 10. Weyant RS, Edmonds P, Swaminathan B. Effect of ionic and nonionic detergents on the Taq polymerase. Biotechniques 1990; 9(3): 308-9.
  • 11. Loffert D, Stump S, Schaffrath N, Berkenkopf M, Kang J. PCR: effects of template quality. Qiagen News 1997; 1: 8-10.
  • 12. Schanfield MS. DNA Testing in Forensic Science. In: Meyers RA (ed), Encyclopedia of Physical Science and Technology. 2001, 3th ed, Academic Press, London. pp:589-602.
  • 13. Kim S, Labbe RG, Ryu S. Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl Environ Microbiol 2000; 66(3): 1213-5.
  • 14. Durmaz R. Nükleik asit amplifikasyon yöntemlerinde sorunlar ve standardizasyon. Mikrobiyol Bul 2000; 34(1-2): 157-74.
  • 15. Holodniy M, Kim S, Katzenstein D, Konrad M, Groves E, Merigan TC. Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol 1991; 29(4): 676-9.
  • 16. Ahokas H, Erkkilä MJ. Interference of PCR amplification by the polyamines, spermine and spermidine. PCR Methods Appl 1993; 3(1): 65-8.
  • 17. de Lomas JG, Sunzeri FJ, Busch MP. False-negative results by polymerase chain reaction due to contamination by glove powder. Transfusion 1992; 32(1): 83-5.
  • 18. Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 1996; 62(3): 1102-6.
  • 19. van Pelt-Verkuil E, van Belkum A, Hays JP. Deoxynucleotide Triphosphates and Buffer Components (Chapter 6). In: van Pelt-Verkuil E, van Belkum A, Hays JP (eds), Principles and Technical Aspects of PCR Amplification. 2008, Springer, New York. pp:91-102.
  • 20. Hedman J, Rådström P. Overcoming inhibition in real-time diagnostic PCR. Methods Mol Biol 2013; 943: 17-48.
  • 21. Rådström P, Lövenklev M, Wolffs P, Löfström C, Knutsson R. Pre-PCR processing strategies. In: Weissensteiner T, Griffin HG, Griffin AM (eds), PCR Technology: Current Innovations. 2003, 2nd, CRC/Taylor & Francis, New York. pp:37-45.
  • 22. Katcher HL, Schwartz I. A distinctive property of Tth DNA polymerase: enzymatic amplification in the presence of phenol. Biotechniques 1994; 16(1): 84-92.
  • 23. Yedidag EN, Koffron AJ, Mueller KH, Kaplan B, Kaufman DB, Fryer JP, et al. Acyclovir triphosphate inhibits the diagnostic polymerase chain reaction for cytomegalovirus. Transplantation 1996; 62(2): 238-42.
  • 24. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 2012; 113(5): 1014-26.
  • 25. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362(6422): 709-15.
  • 26. Lienert K, Fowler JC. Analysis of mixed human/microbial DNA samples: a validation study of two PCR AMP-FLP typing methods. Biotechniques 1992; 13(2): 276-81.
  • 27. Ballari RV, Martin A. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms. Food Chem 2013; 141(3): 2130-6.
  • 28. Partis L, Newton K, Murby J, Wells RJ. Inhibitory effects of enrichment media on the Accuprobe test for Listeria monocytogenes. Appl Environ Microbiol 1994; 60(5): 1693-4.
  • 29. Starnbach MN, Falkow S, Tompkins LS. Species-specific detection of Legionella pneumophila in water by DNA amplification and hybridization. J Clin Microbiol 1989; 27(6): 1257-61.
  • 30. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 2005; 5(2): 209-19.
  • 31. Kralik P, Ricchi M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front Microbiol 2017; 8: 108.
  • 32. Jansson L, Koliana M, Sidstedt M, Hedman J. Blending DNA binding dyes to improve detection in real-time PCR. Biotechnol Rep (Amst). 2017; 14: 34-37.
  • 33. Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res 2007; 35(19): e127.
  • 34. Eischeid AC. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes 2011; 4: 263.
  • 35. Şahiner F, Kubar A, Gümral R, Ardıç M, Yiğit N, Şener K, et al. Efficiency of MY09/11 consensus PCR in the detection of multiple HPV infections. Diagn Microbiol Infect Dis 2014; 80(1): 43-9.
  • 36. Wadowsky RM, Laus S, Libert T, States SJ, Ehrlich GD. Inhibition of PCR-based assay for Bordetella pertussis by using calcium alginate fiber and aluminum shaft components of a nasopharyngeal swab. J Clin Microbiol 1994; 32(4): 1054-7.