Published May 18, 2020 | Version v1
Journal article Open

The 150-Year History of Scientific Discoveries as Milestones in the Development Process of Molecular Biology Techniques

  • 1. The Ministry of Education Gerger Anadolu Imam Hatip High School, Adıyaman, Turkey
  • 2. Department of Medical History and Ethics, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey
  • 3. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey

Description

Özet

Genetik bilgi aktarımı ve DNA’nın keşfi ile ilgili ilk çalışmaların üzerinden geçen süre 150 yılı aşmıştır. Bir cerrahi bandajdaki lökositlerin çekirdeğinde bulunan ve başlangıçta nüklein olarak adlandırılan bir madde üzerindeki çalışmalar DNA’nın keşfi ile sonuçlanırken, her bir araştırmacı veya araştırma ekibinin eklediği yeni keşiflerle zincir halkaları gibi uzayan bilgi birikimi (telahuk-u efkar) günümüz tıbbının en önemli araçlarından olan birçok moleküler tanı yönteminin geliştirilmesine öncülük etmiştir. Nükleik asitlerin üç boyutlu yapısının tanımlanmasından sonraki 20 yıl içerisinde DNA replikasyon mekanizmaları, transkripsiyonun temel parametreleri ve protein senteziyle sonuçlanan translasyon aşamaları ayrıntılarıyla tanımlanmıştır. Bu temel bilgiler nükleik asitlerin saptanması, çoğaltılması, in-vitro sentezi ve klonlanması gibi manipülatif uygulamalarda kullanılan yöntemlerin geliştirilmesi süreçlerine öncülük etmiştir. Bir lökosit çekirdeğinde DNA’nın ilk fark edilmesinden yüz yıl sonra geliştirilen dizi analizi teknikleri ile insan genom projesi kapsamında bir hücreden bir kütüphaneyi dolduran genomik bilgi dizisi çıkarılmıştır. Araştırmacılara çok sayıda Nobel ödülü kazandıran bu süreçlerin sonrasında bilinmeyen mikroorganizmalar keşfedilmiş, gen susturulması ve klonlama çalışmaları yapılmış ve rekombinan gen teknolojisinin sunduğu tekniklerle sayısız biyomolekülün in-vitro üretimi mümkün hale gelmiştir. Yeni moleküler tekniklerinin geliştirilmesi tıp, biyoloji ve veterinerlikte tanı, tedavi ve gen teknolojisi alanlarında bilim insanlarına yeni pencereler açılmıştır. Bu makalede günümüzde kullanılan moleküler biyoloji tekniklerinin öncüleri niteliğindeki ilk çalışmaların ve zorlu süreçlerin sonunda ulaşılan tarihi keşiflerin hikayeleri özetlenmiştir.

Abstract

The time elapsed since the first studies on genetic information transfer and the discovery of DNA has exceeded 150 years. While studies on a substance that was originally called nuclein in the core of leukocytes in a surgical bandage resulted in the discovery of DNA, the knowledge of humanity has extended as chain rings with the new discoveries added by each researcher or research team and has led to the development of many molecular diagnostic methods, one of the most important tools of today's medicine. DNA replication mechanisms, basic parameters of transcription and translation stages that result in protein synthesis are described in detail within 20 years after the definition of the three-dimensional structure of nucleic acids. This basic information pioneered the development of methods used in manipulative applications such as the detection, replication, in-vitro synthesis and cloning of nucleic acids. The genomic information filling a library from a cell was derived by using sequence analysis techniques, developed a hundred years after the first detection of DNA in a leukocyte nucleus, within the scope of the human genome project. After these processes, which gave researchers many Nobel prizes, unknown microorganisms were discovered, gene silencing and cloning studies were performed, and in-vitro production of numerous biomolecules has become possible with the techniques offered by recombinant gene technology. The development of new molecular techniques opens new windows for scientists for diagnosis, treatment and gene technology in the fields of medicine, biology and veterinary medicine. This article summarizes the stories of the earliest studies and pioneers of molecular biology techniques used today and the great discoveries reached at the end of the difficult processes.

Notes

Moleküler Biyoloji Tekniklerinin Gelişim Sürecinde Dönüm Noktası Niteliğindeki Bilimsel Keşiflerin 150 Yıllık Tarihi

Files

jmvi.2020.5.pdf

Files (802.3 kB)

Name Size Download all
md5:ae342a905520c3417e14369931ac00e6
802.3 kB Preview Download

Additional details

References

  • 1. Schacherer J. Beyond the simplicity of Mendelian inheritance. C R Biol 2016; 339(7-8): 284-8.
  • 2. Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 2008; 122(6): 565-81.
  • 3. Avery OT, MacLeod CM, McCarty M. Studies of the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J Exp Med 1944; 79(2): 137-58.
  • 4. Turner L. A sheep named Dolly. CMAJ 1997; 156(8): 1149-50.
  • 5. Corley RB. Detection and Analysis of Nucleic Acids (Chapter 2). In: Corley RB (ed), A Guıde to Methods in The Biomedical Sciences. 2005, Springer, New York. pp:25-38.
  • 6. Tsongalis GJ, Silverman LM. Molecular diagnostics: a historical perspective. Clin Chim Acta 2006; 369(2): 188-92.
  • 7. Handricks DA, Comanor L. Signal Amplification-Based Techniques. In: Lorincz A (ed), Nucleic Acid Testing for Human Disease. 2006, CRC/Taylor & Francis, New York. pp.19-64.
  • 8. Warford A, Pringle JH, Hay J, Henderson SD, Lauder I. Southern blot analysis of DNA extracted from formal-saline fixed and paraffin wax embedded tissue. J Pathol 1988; 154(4): 313-20.
  • 9. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, et al. Isothermal amplified detection of DNA and RNA. Mol Biosyst 2014; 10(5): 970-1003.
  • 10. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, et al. Polyphasic approach of bacterial classification - An overview of recent advances. Indian J Microbiol 2007; 47(2): 98-108.
  • 11. Harth E, Romero J, Torres R, Espejo RT. Intragenomic heterogeneity and intergenomic recombination among Vibrio parahaemolyticus 16S rRNA genes. Microbiology 2007; 153(Pt 8): 2640-7.
  • 12. Goldberg B, Sichtig H, Geyer C, Ledeboer N, Weinstock GM. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics. mBio 2015; 6(6): e01888-15.
  • 13. Lamoril J, Bogard M, Ameziane N, Deybach JC, Bouizegarènea P. Biologie moléculaire et microbiologie clinique en 2007: Généralités - Partie 1Molecular biology in clinical microbiology in 2007 - Part 1. Immuno-analyse & Biologie Spécialisée 2007; 22(1): 5-18.
  • 14. Lau TV, Tan JMA, Puthucheary SD, Puah SM, Chua KH. Genetic relatedness and novel sequence types of clinical Aeromonas dhakensis from Malaysia. Braz J Microbiol 2020.
  • 15. Hoza AS, Mfinanga SG, Moser I, König B. Molecular characterization of Mycobacterium tuberculosis isolates from Tanga, Tanzania: First insight of MIRU-VNTR and microarray-based spoligotyping in a high burden country. Tuberculosis (Edinb) 2016; 98: 116-24.
  • 16. Matsumoto T, Tsuchihashi Z, Ito C, Fujita K, Goto M, Furuichi Y. Genetic Diagnosis of Werner's Syndrome, a Premature Aging Disease, by Mutant Allele Specific Amplification (MASA) and Oligomer Ligation Assay (OLA). Journal of Anti-Aging Medicine 1998 [2009]; 1(2): 131-40.
  • 17. Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. Fahy E, Kwoh DY, Gingeras TR. PCR Methods Appl 1991; 1(1): 25-33.
  • 18. Chernesky MA. Nucleic acid tests for the diagnosis of sexually transmitted diseases. FEMS Immunol Med Microbiol. 1999; 24(4): 437-46.
  • 19. Miescher F. Ueber die chemische Zusammensetzung der Eiterzellen. Medicinisch-chemische Untersuchungen 1871; 4: 441-60.
  • 20. Plósz P. Ueber das chemische Verhalten der Kerne der Vogelund Schlangenblutkörperchen. Medicinisch-chemische Untersuchungen 1871; 4: 461-2.
  • 21. Hoppe-Seyler F. Ueber die chemische Zusammensetzung des Eiters. Medicinisch-chemische Untersuchungen 1871; 4: 486-501.
  • 22. Miescher F. Das Protamin - Eine neue organische Basis aus den Samenfäden des Rheinlachses. Berichte der deutschen chemischen Gesellschaft 1874; VII: 376.
  • 23. Portugal FH. Cohen JS. A century of DNA, A History of the Discovery of the Structure and Function of the Genetic Substance. 1977, MIT, Cambridge. pp. 6-30.
  • 24. Olby RC. The path to the double helix: the discovery of DNA. 1994, Dover Publications, Mineola.
  • 25. Altmann R. Ueber Nucleinsäuren. Arch Anat Phys 1889: 524-36.
  • 26. Jones ME. Albrecht Kossel, a biographical sketch. Yale J Biol Med 1953; 26(1): 80-97.
  • 27. Nobel Prize Organisation, The official website of the Nobel Prize, All Nobel Prizes, Oslo, Norway. Available at: https://www.nobelprize.org/prizes/lists/all-nobel-prizes [Accessed May 5, 2020].
  • 28. Charles H. Calisher. Sequences vs viruses: producer vs product, cause and effect. Croat Med J 2007; 48(1): 103-6.
  • 29. Levene P, The structure of yeast nucleic acid. J Biol Chem 1919; 40 (2): 415-24.
  • 30. Chargaff E, Vischer E, Doniger R, Green C, Misani F. The composition of the desoxypentose nucleic acid of thymus and spleen. J Biol Chem 1949; 177: 405-16.
  • 31. Chargaff E. Structure and function of nucleic acid as cell constituent. Fed Proc 1951; 10: 654-59.
  • 32. Astbury WT. X-ray studies of nucleic acids. Symp Soc Exp Biol 1947; 1: 66-76.
  • 33. Klug A. The discovery of the DNA double helix. J Mol Biol 2004; 335(1): 3-26.
  • 34. Pauling L. X-ray diffraction studies of amino acids, peptides and proteins. First International Poliomyelitis Conference, New York, July 12-17, 1948, 7 pages. [Filed under: LP Publications, 1948 p.19]
  • 35. Pauling L, Corey RB. A Proposed Structure For The Nucleic Acids. Proc Natl Acad Sci U S A. 1953; 39(2): 84-97.
  • 36. Franklin RE, Gosling RG. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 1953; 172(4369): 156-7.
  • 37. Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737-8.
  • 38. Kossel A. Beziehungen der Chemie zur Physiologie. In: Meyer Ev (ed), Die Kultur der Gegenwart, ihre Entwicklung und ihre Ziele: Chemie. 1913, Teubner, Leipzig. pp:376-412.
  • 39. Griffith F. The Significance of Pneumococcal Types. J Hyg (Lond) 1928; 27(2): 113-59.
  • 40. Beadle GW, Tatum EL. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A 1941; 27(11): 499-506.
  • 41. Hershey A, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 1952; 36(1): 39-56.
  • 42. Watson JD, Crick FH. Genetical implications of the structure of deoxyribonucleic acid. Nature 1953; 171(4361): 964-7.
  • 43. Meselson M, Stahl FW. The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA 1958; 44(7): 671-82.
  • 44. Griffiths AJF. The Structure and Replication of DNA (Chapter 8). In: Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart MW (eds), An Introduction to Genetic Analysis (7th edition). 2000, W. H. Freeman, New York.
  • 45. Lehman IR, Bessman MJ, Simms ES, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 1958; 233(1): 163-70.
  • 46. Khorana HG. Polynucleotide synthesis and the genetic code. Fed Proc 1965; 24(6): 1473-87.
  • 47. Allen FW. The Biochemistry of the Nucleic Acids, Purines, and Pyrimidines. Annual Review of Biochemistry 1941; 10: 221-44.
  • 48. Siekevitz P, Zamecnik PC. Ribosomes and protein synthesis. J Cell Biol 1981; 91(3Pt2): 53s-65s.
  • 49. Grunberg-Manago M, Ortiz PJ, Ochoa S. Enzymatic synthesis of nucleic acidlike polynucleotides. Science 1955; 122(3176): 907-10.
  • 50. Furth JJ, Hurwitz J, Anders M. The role of deoxyribonucleic acid in ribonucleic acid synthesis. I. The purification and properties of ribonucleic acid polymerase. J Biol Chem 1962; 237: 2611-9.
  • 51. MacMillan AM. Fifty years of "Watson–Crick". Pure Appl Chem 2004; 76(7-8): 1521-4.
  • 52. Yamane T, Cheng TY, Sueoka N. Species Specificity of Amino Acid Transfer-RNA and Amino Acyl T-RNA Synthetase. Cold Spring Harb Symp Quant Biol 1963; 28: 569-78.
  • 53. Crick FH. The biological replication of macromolecules. Symp Soc Exp Biol 1958; 12: 138-63.
  • 54. Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins. Nature 1961; 192 (4809): 1227-32.
  • 55. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3: 318-56.
  • 56. Warner JR, Rich A. The number of soluble RNA molecules on reticulocyte polyribosomes. Proc Natl Acad Sci U S A 1964; 51(6): 1134-41.
  • 57. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, et al. Structure of a ribonucleic acid. Science 1965; 147(3664): 1462-5.
  • 58. Levitt M. Detailed molecular model for transfer ribonucleic acid. Nature 1969; 224(5221): 759-63.
  • 59. Kim SH, Rich A. Single crystals of transfer RNA: an X-ray diffraction study. Science 1968; 162(3860): 1381-4.
  • 60. Sussman JL, Holbrook SR, Warrant RW, Church GM, Kim SH. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol 1978; 123(4): 607-30.
  • 61. Noller HF, Woese CR. Secondary structure of 16S ribosomal RNA. Science 1981; 212(4493): 403-11.
  • 62. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 1970; 226(5252): 1209-11.
  • 63. Han H. RNA Interference to Knock Down Gene Expression. Methods Mol Biol 2018; 1706: 293-302.
  • 64. Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature 2004; 431(7006): 338-42.
  • 65. Lundstrom K. Coronavirus Pandemic-Therapy and Vaccines. Biomedicines 2020; 8(5): pii.E109.
  • 66. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-11.
  • 67. Ding SW, Han Q, Wang J, Li WX. Antiviral RNA interference in mammals. Curr Opin Immunol 2018; 54:109-14.
  • 68. Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA Interference Mechanisms and Applications in Plant Pathology. Annu Rev Phytopathol 2018; 56: 581-610.
  • 69. Michelson AM, Todd SR. Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage. J Chem Soc 1955; 2632-8.
  • 70. Hall RH, Todd A, Webb RF. Nucleotides. Part XLI. Mixed anhydrides as intermediates in the synthesis of dinucleoside phosphates. J Chem Soc 1957; 3291-6.
  • 71. van Pelt-Verkuil E, van Belkum A, Hays JP. The Polymerase Chain Reaction (Chapter 1). In: van Pelt-Verkuil E, van Belkum A, Hays JP (eds), Principles and Technical Aspects of PCR Amplification. 2008, Springer, New York. pp:1-7.
  • 72. Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 1969; 64(2): 600-4.
  • 73. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98(3): 503-17.
  • 74. Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 1977; 74(12): 5350-4.
  • 75. Bauman JG, Wiegant J, Borst P, van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res 1980; 128(2): 485-90.
  • 76. Rudkin GT, Stollar BD. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 1977; 265(5593): 472-3.
  • 77. Patrinos GP, Ansorge W. Molecular Diagnostics: Past, Present, and Future (Chapter-1). In: Patrinos GP, Ansorge W (eds), Molecular Diagnostics. 2005, Elsevier, San Diego, California. pp:1-11.
  • 78. Şahiner F, Gümral R. Sinyal amplifikasyon teknikleri ve tanısal virolojideki uygulamaları. J Ist Faculty Med 2019.
  • 79. Panet A, Khorana HG. Studies on polynucleotides. The linkage of deoxyribopolynucleotide templates to cellulose and its use in their replication. J Biol Chem 1974; 249(16): 5213-21.
  • 80. Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG. Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J Mol Biol 1971; 56(2): 341-61.
  • 81. McPherson MJ, Moller SG, An introduction to PCR (Chapter 1). In: McPherson MJ, Moller SG (eds), PCR: The Basics. 2000, BIOS Scientific Publishers Limited, Oxford, UK. pp:1-7.
  • 82. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230(4732): 1350-4.
  • 83. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239(4839): 487-91.
  • 84. Arber W, Linn S. DNA modification and restriction. Annu Rev Biochem 1969; 38: 467-500.
  • 85. Roberts RJ. How restriction enzymes became the workhorses of molecular biology. Proc Natl Acad Sci U S A 2005; 102(17): 5905-8.
  • 86. Smith HO, Wilcox KW. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol 970; 51(2): 379-91.
  • 87. Kelly TJ Jr, Smith HO. A restriction enzyme from Hemophilus influenzae. II. J Mol Biol 1970; 51(2): 393-409.
  • 88. Danna K, Nathans D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci USA 1971; 68(12): 2913-7.
  • 89. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980; 32(3): 314-31.
  • 90. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A 1977; 74(2): 560-4.
  • 91. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977; 74(12): 5463-7.
  • 92. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 1977; 265(5596): 687-95.
  • 93. Feldmann H, Aigle M, Aljinovic G, André B, Baclet MC, Barthe C, et al. Complete DNA sequence of yeast chromosome II. EMBO J 1994; 13(24): 5795-809.
  • 94. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science 1996; 274(5287): 546-567.
  • 95. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science 2000; 287(5461): 2185-95.
  • 96. Cohen S, Chang A, Boyer H, Helling R. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 1973; 70(11): 3240-4.
  • 97. Jackson DA, Symons RH, Berg P. Biochemical Method for Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Operon of Escherichia coli. Proc Natl Acad Sci U S A 1972; 69(10): 2904-9.
  • 98. Lobban PE, Kaiser AD. Enzymatic end-to-end joining of DNA molecules. J Mol Biol 1973; 78(3): 453-71.
  • 99. Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, et al. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 1977; 198(4321): 1056-63.
  • 100. Johnson IS. Human insulin from recombinant DNA technology. Science 1983; 219(4585): 632-7.
  • 101. Murray AW, Szostak JW. Construction of artificial chromosomes in yeast. Nature 1983; 305(5931): 189-93.
  • 102. Jeffreys AJ, Wilson V, Thein SL. Individual-specific 'fingerprints' of human DNA. Nature 1985; 316(6023): 76-9.
  • 103. Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 1984; 37(1): 67-75.
  • 104. Gut IG. DNA analysis by MALDI-TOF mass spectrometry. Hum Mutat 2004; 23(5): 437-41.
  • 105. Ali Süreyya, Salim Tevfik (eds). Usul-i Teşhis-i Seriri (3. baskı). 1330 (1914), Tıp ve Fen Kütüphanesi, Kader Matbaası, İstanbul.
  • 106. Aziz Hamdi (ed). Ameli ve Nazari Bakteriyoloji Dersleri. 1322 (1906), Mektebi Tıbbiye-i Şahane Matbaası, İstanbul.
  • 107. Yurdakul ES. Kızılay'ın İlk Hastaneleri (1877-1878): Yatan Hastalarda Görülen Enfeksiyonlar ve Mortalite Oranları. Türk Mikrobiyoloji Cemiyeti Dergisi 2019; 49(2): 104-12.
  • 108. Ataç A. Besim Ömer Paşa (Besim Ömer Akalın Hatıra Albümü). 2011, Roche Müstahzarları, Ankara.