Published May 9, 2020 | Version v1
Journal article Open

The Use of Convalescent Plasma and Hyperimmunoglobulin in SARS-CoV-2 Infections

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey

Description

Özet

Hastalıktan iyileşmiş kişiler veya aşılanmış donörlerden toplanan konvalesan plazma ve bu plazmaların işlenmesi ile elde edilen immünglobulinler standart tedavilerin dışında, hayatı tehdit eden veya yeni ortaya çıkan ve spesifik tedavi seçenekleri kısıtlı olan enfeksiyonların tedavisinde başvurulan geleneksel uygulamalardır. İmmün tam kan transfüzyonu, konvalesan plazma veya plazma türevli hiperimmünglobulinler enfeksiyonu henüz geçirmekte olan hastalara aktarılarak hastaların enfeksiyona verdiği cevap ve iyileşme süreci desteklenir. Poliklonal antikorlarla pasif bağışıklamayı amaçlayan bu geleneksel yaklaşımlar dışında, rekombinan gen teknolojisi prensibine dayalı yeni tekniklerle üretilen patojene spesifik monoklonal ve poliklonal antikorlar da profilaksi ve tedavi amaçlı yaygın kullanımı olan ve benzer etkiyi hedefleyen yeni alternatiflerdir. Plazma türevli tedavilerin influenza virus, kanamalı ateş virüsleri, SARS-CoV ve MERS-CoV enfeksiyonlarının tedavisinde yararlı olabileceği yapılan araştırmalarla gösterilmiştir. Yakın zamanda yapılan birkaç çalışmada ise konvalesan plazmanın COVID-19 hastalarının tedavisinde yararlı olabileceğine dair kanıtlar sunulmuştur. Spesifik antiviral tedavilerin ve koruyucu bir aşının yokluğu da dikkate alındığında konvalesan plazma veya saflaştırılmış hiperimmünglobulin uygulamaları ülkelere göre değişmek üzere %3 ile %10’u bulan COVID-19 mortalite oranlarını azaltmada kısa sürede müdahale imkanı sunan umut vadeden seçenekler olarak görülmektedir. Standart önlemlere uyulması koşulu ile ulusal ve uluslararası resmi kurum ve kuruluşlar tarafından da desteklenen bu tedavi yaklaşımları pandemi yönetiminde ve stoklanabilir özellikleri ile gelecekteki yeni olası bölgesel epidemiler için erken dönem tedavi seçeneği olarak değerlendirilmektedir. Bu derleme makalede SARS-CoV-2 hastalarında konvalesan plazma ve hiperimmünglobulin kullanımının olası yararlılıkları ve bu tedavi yaklaşımı ile ilişkili olabilecek riskleri ele almak amaçlanmış ve bu konuda yürütülen güncel klinik çalışmaların bir özeti sunulmuştur.

Abstract

Convalescent plasma and immunoglobulins derived by processing these plasmas obtained from disease-healed individuals or vaccinated donors are traditional practices for the treatment of life-threatening or emerging infections for which no specific treatment exists. Immune whole blood transfusion, convalescent plasma or plasma-derived hyperimmunoglobulin are transferred to patients who have just had the infection, and the response and recovery process of the patients are supported. Apart from these traditional approaches aimed at passive immunization with polyclonal antibodies, pathogen-specific monoclonal and polyclonal antibodies produced by new techniques based on the principle of recombinant gene technology are also new alternatives that have a common use for prophylaxis and therapeutic purposes. Studies have shown that plasma-derived treatments can be useful in the treatment of influenza virus, hemorrhagic fever viruses, SARS-CoV and MERS-CoV infections. Also, several recent studies have provided evidence that convalescent plasma may be useful in the treatment of patients with COVID-19. Considering the absence of a protective vaccine and specific antiviral treatments, convalescent plasma or purified hyperimmunoglobulin treatments are seen as promising options that offer a short-term intervention in reducing COVID-19 mortality rates ranging from 3% to 10% to vary according to countries. These treatment approaches, which are supported by national and international official institutions and organizations, provided that standard precautions are followed, are considered as early treatment options for pandemic management and new possible regional epidemics in the future because these are storable products. It is aimed to discuss the possible benefits of using convalescent plasma and hyperimmunoglobulin in SARS-CoV-2 patients and the risks that may be associated with this treatment approach, and a summary of current clinical studies conducted on this subject is presented in this review article.

Notes

SARS-CoV-2 Enfeksiyonlarında Konvalesan Plazma ve Hiperimmünglobulin Kullanımı

Files

jmvi.2020.4.pdf

Files (857.3 kB)

Name Size Download all
md5:366638490fa58e26f3c3faeffefda5b4
857.3 kB Preview Download

Additional details

References

  • 1. Restivo JSA, Karafin MS. Human Immunoglobulin Preparations, (Chapter-39). In: Shaz BH, Hillyer CD, Reyes Gil M (eds), Transfusion Medicine and Hemostasis, Clinical and Laboratory Aspects (3rd edition). 2019, Elsevier, Cambridge. pp:235-46.
  • 2. Karafin MS, Hillyer CD, Shaz BH. Transfusion of Plasma And Plasma Derivatives: Plasma, Cryoprecipitate, Albumin, And Immunoglobulins, (Chapter-115). In: Hoffman R, Benz EJ, Heslop H, Weitz J (eds), Hematology: Basic Principles and Practice (7th edition). 2018, Elsevier, Philadelphia. pp:1744-58.
  • 3. Burnouf T. An overview of plasma fractionation. Ann Blood 2018; 3:33 (1-10).
  • 4. Şenol E. Passive Immunization for Prophylaxis and Treatment of Infectious Diseases. Flora 2003; 8(3): 200-6.
  • 5. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020 May;92(5):479-90.
  • 6. Shen C , Wang Z , Zhao F , Yang Y , Li J , Yuan J , et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020. [Epub ahead of print]
  • 7. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211(1): 80-90.
  • 8. Bozzo J, Jorquera JI. Use of human immunoglobulins as an anti-infective treatment: the experience so far and their possible re-emerging role. Expert Rev Anti Infect Ther 2017; 15(6): 585-604.
  • 9. Stinebaugh BJ, Schloeder FX, Johnson KM, Mackenzie RB, Entwisle G, De Alba E. Bolivian hemorrhagic fever. A report of four cases. Am J Med 1966; 40(2): 217-30.
  • 10. Ruggiero HA, Perez Isquierdo F, Milani HA, Barri A, Val A, Maglio F, Astarloa L, Gonzalez Cambaceres C, Milani HL, Tallone JC. Treatment of Argentine hemorrhagic fever with convalescent's plasma 4433 cases. Presse Med 1986; 15(45): 2239-42.
  • 11. Frame JD, Verbrugge GP, Gill RG, Pinneo L. The use of Lassa fever convalescent plasma in Nigeria. Trans R Soc Trop Med Hyg 1984; 78(3): 319-24.
  • 12. Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 2007; 357(14): 1450-1.
  • 13. Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011; 52(4): 447-56.
  • 14. Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis 2005; 24(9): 583-91.
  • 15. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020. pii: 138745.
  • 16. Focosi D, Anderson AO, Tang JW, Tuccori M. Convalescent plasma therapy for COVID-19: State of the Art. Preprints 2020, 2020040097.
  • 17. Ko JH, Seok H, Cho SY, Ha YE, Baek JY, Kim SH, et al. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther 2018; 23(7): 617-22.
  • 18. Roback JD, Guarner J. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges. JAMA 2020.
  • 19. Lu JH, Guo ZM, Han WY, Wang GL, Zhang DM, Wang YF, et al. Preparation and development of equine hyperimmune globulin F(ab')2 against severe acute respiratory syndrome coronavirus. Acta Pharmacol Sin 2005; 26(12): 1479-84.
  • 20. Verband Forschender Arzneimittelhersteller (VFA, Die forschenden Pharma-Unternehmen), Berlin, Germany. Therapeutic medicines against the coronavirus infection Covid-19. Available at: https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/therapeutic-medicines-coronavirus-covid-19 [Accessed April 7, 2020].
  • 21. Davidson E, Bryan C, Fong RH, Barnes T, Pfaff JM, Mabila M, et al. Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies. J Virol 2015; 89(21): 10982-92.
  • 22. Anudeep TC, Jeyaraman M, Shetty DU, Raj MH, Ajay SS, Somasundaram R, et al. Convalescent Plasma as a Plausible Therapeutic Option for nCOVID-19 – A Review. J Clin Trials 2020; 10(3):1000409 (1-7).
  • 23. Rosenke K, Bounds CE, Hanley PW, Saturday G, Sullivan E, Wu H, et al. Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. J Infect Dis 2018; 218(suppl_5): S658-S661.
  • 24. Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ 2020; 368: m1256.
  • 25. World Health Organization (WHO), Geneva, Switzerland. Middle East respiratory syndrome coronavirus (MERS-CoV). Available at: http://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=1&ua=1&ua=1 [Accessed April 18, 2020].
  • 26. World Health Organization (WHO), Geneva, Switzerland. Summary of probable SARS cases with onset of illness from November 1, 2002 to July 31, 2003. Available at: https://www.who.int/csr/sars/country/table2004_04_21/en/ [Accessed April 18, 2020].
  • 27. Arntzen C. Plant-made pharmaceuticals: from 'Edible Vaccines' to Ebola therapeutics. Plant Biotechnol J 2015; 13(8): 1013-6.
  • 28. McCarthy M. US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ 2014; 349: g5488.
  • 29. World Health Organization (WHO), Geneva, Switzerland. Global Influenza Strategy 2019-2030. Available at: https://www.who.int/influenza/Global_Influenza_Strategy_2019_2030_Summary_English.pdf?ua=1 [Accessed April 18, 2020].
  • 30. Hung IFN, To KKW, Lee CK, Lee KL, Yan WW, Chan K, et al. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013; 144(2): 464-73.
  • 31. Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 2006; 145(8): 599-609.
  • 32. Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004; 10(7): 676-8.
  • 33. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1): 44-6.
  • 34. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814-20.
  • 35. Arabi Y, Balkhy H, Hajeer AH. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus 2015; 4: 709.
  • 36. Worldometer, Dadax Limited, Delaware, USA. COVID-19 Coronavirus Pandemic. Available at: https://www.worldometers.info/coronavirus/#countries [Accessed May 5, 2020].
  • 37. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
  • 38. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020; 117(17): 9490-6.
  • 39. Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020; 11(1): 2251 (1-6).
  • 40. Cohen J. COVID-19 shot protects monkeys. Science 2020; 368 (6490): 456-7.
  • 41. Zeng QL, Yu ZJ, Gou JJ, Li GM, Ma SH, Zhang GF, et al. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in COVID-19 Patients. J Infect Dis 2020. pii: jiaa228. [Epub ahead of print]
  • 42. Anadolu Ajansı, Ankara, Türkiye. Turkey: Good response for COVID-19 plasma treatment. Available at: https://www.aa.com.tr/en/turkey/turkey-good-response-for-covid-19-plasma-treatment-/1801512 [Accessed April 12, 2020].
  • 43. Anadolu Ajansı, Ankara, Türkiye. Antalya'da plazma nakledilen hastanın testi negatife döndü. Available at: https://www.aa.com.tr/tr/koronavirus/antalyada-plazma-nakledilen-hastanin-testi-negatife-dondu/1804495 [Accessed April 12, 2020].
  • 44. Anadolu Ajansı, Ankara, Türkiye. Türkiye'de ilk plazma tedavisi uygulanan Kovid-19 hastası iyileşti. Available at: https://www.aa.com.tr/tr/koronavirus/turkiyede-ilk-plazma-tedavisi-uygulanan-kovid-19-hastasi-iyilesti/1821009 [Accessed April 28, 2020].
  • 45. Gutfraind A, Meyers LA. Evaluating large-scale blood transfusion therapy for the current Ebola epidemic in Liberia. J Infect Dis 2015; 211(8): 1262-7.
  • 46. National Institutes of Health (NIH), Bethesda, Maryland, USA. Clinical studies related to COVID-19. Available at: https://www.clinicaltrials.gov/ct2/results?cond=COVID&term=convalescent+plasma&cntry=&state=&city=&dist= [Accessed May 5, 2020].
  • 47. Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother 2005; 56: 919-22.
  • 48. Dalakas MC, Clark WM. Strokes, thromboembolic events, and IVIg: rare incidents blemish an excellent safety record. Neurology 2003; 60(11): 1736-7.
  • 49. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 2020; 94(5). pii: e02015-19.
  • 50. Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol 2011 Oct; 85(20): 10582-97.
  • 51. Chow SK, Smith C, MacCarthy T, Pohl MA, Bergman A, Casadevall A. Disease-enhancing antibodies improve the efficacy of bacterial toxin-neutralizing antibodies. Cell Host Microbe 2013; 13(4): 417-28.
  • 52. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; 4(4). pii: 123158.
  • 53. Zhang L, Zhang F, Yu W, He T, Yu J, Yi CE, et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J Med Virol 2006; 78(1): 1-8.