Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published June 28, 2019 | Version Final
Conference paper Open

A cross-sectorial synergies identification methodology for industrial symbiosis

  • 1. University of Lyon 3, CRGA-EVS, UMR 5600, Lyon, France
  • 2. Strane Innovation, Gif sur Yvette, France

Description

Circular Economy is the model the European Union opted for to make its production and consumption system more sustainable. Industrial symbiosis is one of its operational implementation strategies. This concept aims at redesigning industries supply chains by creating new interconnections between traditionally independent chains, new sources of raw materials and new market opportunities
for wasted resources. This paper introduces an innovative methodology, developed within the SCALER project that aims at  facilitating substitution synergies identification between cross-sectorial supply chains. Synergy ideas are automatically generated thanks to dedicated algorithms performing matching queries on input and output data of 17 industrial sectors. Data is generic and collected from publicly available sources. The methodology’s deductive approach has the benefit of proposing relevant synergy ideas for industries without asking confidential operating data. 1000 relevant synergies were already identified. Development
perspectives are to reinforce the methodology with additional technical datasets such as treatment technologies, geolocated facilities databases, European economic activity/waste codes.

Files

sdm19-044.pdf

Files (511.9 kB)

Name Size Download all
md5:8819f22eac9c4f203ba769ae21921084
511.9 kB Preview Download

Additional details

Funding

SCALER – Scaling European Resources with Industrial Symbiosis 768748
European Commission

References

  • Commission, E. Closing the loop - An EU action plan for the Circular Economy. (2015).
  • Prieto-Sandoval, V., Jaca, C. & Ormazabal, M. Towards a consensus on the circular economy. J. Clean. Prod. 179, 605–615 (2018).
  • Kirchherr, J., Reike, D. & Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221–232 (2017).
  • Gardetti, M. A. Introduction and the concept of circular economy. Circ. Econ. Text. Appar. 1–11 (2019). doi:10.1016/B978-0-08-102630-4.00001-7
  • Park, J., Sarkis, J. & Wu, Z. Creating integrated business and environmental value within the context of China's circular economy and ecological modernization. J. Clean. Prod. 18, 1494–1501 (2010).
  • Ma, S., Wen, Z., Chen, J. & Wen, Z. Mode of circular economy in China's iron and steel industry: a case study in Wu'an city. J. Clean. Prod. 64, 505–512 (2014).
  • EIT RawMaterials. Circulator - The circular business models mixer. (2017). Available at: http://www.circulator.eu/.
  • Lombardi, D. R. & Laybourn, P. Redefining Industrial Symbiosis. J. Ind. Ecol. 16, 28– 37 (2012)
  • Chertow, M. R. Industrial symbiosis : Literature and Taxonomy. Annu. Rev. Energy Environ. 25, 313–337 (2000).
  • Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D. & Roman, L. Mapping Industrial Symbiosis Development in Europe_ typologies of networks, characteristics, performance and contribution to the Circular Economy. Resour. Conserv. Recycl. 141, 76–98 (2019).
  • Adoue, C. & Chambers, S. Implementing industrial ecology : methodological tools and reflections for constructing a sustainable development. (Science Publishers, 2011).
  • Yuan, Z. & Shi, L. Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. J. Clean. Prod. 17, 1295–1302 (2009).
  • Maqbool, A. S., Mendez Alva, F. & Van Eetvelde, G. An assessment of European information technology tools to support industrial symbiosis. Sustainability 11, 15 (2019).
  • Grant, G. B., Seager, T. P., Massard, G. & Nies, L. Information and communication technology for industrial symbiosis. J. Ind. Ecol. 14, 740–753 (2010).
  • Fyfe, J., Mason, L., Boyle, T. & Giurco, D. Wastenot: the streamline resource exchange background, development and case studies. (2010).
  • Holgado, M., Evans, S. & Benedetti, M. Toolkit for Industrial Symbiosis (D4.3). (2017).
  • Benedict, M. & Kosmol, L. Designing Industrial Symbiosis Platforms -from Platform Ecosystems to Industrial Ecosystems. in Twenty-second Pacific Asia Conference on Information Systems (2018).
  • Harpet, C. & Gully, E. Écologie industrielle et territoriale: quels outils d'aide à la décision? De l'analyse des flux à l'approche intégrée. Déchets - Sci. Tech. 12 (2013).
  • Aid, G., Brandt, N., Lysenkova, M. & Smedberg, N. Looplocal – a heuristic visualization tool to support the strategic facilitation of industrial symbiosis. J. Clean. Prod. 98, 328–335 (2015).
  • ISDATA. ISDATA. (2013). Available at: http://isdata.org.
  • EPOS. The EPOS sector blueprints. 1 (2017). Available at: https://www.spire2030.eu/sites/default/files/users/user222/Eposdocs/HullPC/Blueprints.pdf.
  • Cecelja, F. et al. E-symbiosis: technology-enabled support for industrial symbiosis targeting small and medium enterprises and innovation. J. Clean. Prod. 98, 336–352 (2015).
  • Evans, S., Benedetti, M. & Holgado Granados, M. Library of Industrial Symbiosis case studies and linked exchanges. (2017). doi:https://doi.org/10.17863/CAM.12608
  • Vladimirova, D., Miller, K. & Evans, S. Lessons learnt and best practices for enhancing industrial symbiosis in the process industry. (2018).
  • European Commission. Report on critical raw materials and the circular economy - Publications Office of the EU. (2018).
  • Benedetti, M., Holgado, M. & Evans, S. Prototype library of case studies linked to a waste database (D4.2). (2017).