Published January 23, 2021 | Version 1
Dataset Open

ChinaHighPM2.5: VIIRS 6 km Ground-level PM2.5 Dataset for China

  • 1. University of Maryland

Description

ChinaHighPM2.5 is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for China (i.e., ChinaHighAirPollutants, CHAP). It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution.

This is the VIIRS derived yearly 6 km ground-level PM2.5 dataset in China from 2013 to 2018, and this dataset yields a high quality with a cross-validation coefficient of determination (CV-R2) reaching 0.88 and a root-mean-square error (RMSE) of 16.52 µg m-3 on a daily basis.

If you use the ChinaHighPM2.5 dataset for related scientific research, please cite the corresponding reference (Wei et al., TGRS, 2022):

More CHAP datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html

Notes

Note that this dataset is continuously updated, and if you want to apply for more data or have any questions, please contact me (Email: weijing_rs@163.com; weijing.rs@gmail.com).

Files

Wei_et_al-TGRS-2021.pdf

Files (28.4 MB)

Name Size Download all
md5:dc0e38e9681d379acf715b2041ab1722
2.6 MB Download
md5:734014c1582dd1273e1165adb2e77908
2.6 MB Download
md5:c56621c2df11783fda6f3f9648f31987
2.6 MB Download
md5:7f93783468032befe88af83511159837
2.6 MB Download
md5:6c2c6e0cf329e14e87eee59bfa0bfee4
2.6 MB Download
md5:d5c335ffb8b922c6ddc280a1a3d53be7
2.6 MB Download
md5:66bba11304f820d99b23c96fb1c6563c
13.0 MB Preview Download

Additional details

Related works

References
Journal article: 10.1109/TGRS.2021.3050999 (DOI)

References

  • Wei, J., Li, Z., Sun, L., Xue, X., Ma, Z., Liu, L., Fan, T., and Cribb, M. Extending the EOS long-term PM2.5 data records since 2013 in China: application to the VIIRS Deep Blue aerosol products. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12, 4100412. https://doi.org/10.1109/TGRS.2021.3050999