There is a newer version of the record available.

Published January 20, 2021 | Version v1
Dataset Open

Ubiquitin Ligase Wwp1 Gene Deletion Attenuates Diastolic Dysfunction in Pressure Overload Hypertrophy

  • 1. University of South Carolina School of Medicine
  • 2. University of South Carolina

Description

Background. Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO induced HFpEF.

Methods/Results. LV echocardiography in mice with global Wwp1 deletion (n=41; Wwp1-/-) was performed at 12 weeks of age (Baseline) and then at 2 and 4 weeks following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild type mice (Wwp1+/+; n=33) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 + 0.46 in Wwp1+/+ but was 1.73 + 0.19 in the Wwp1-/- group (p<0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared to the Wwp1+/+ group at 4 weeks post-LVPO (p<0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as  transforming growth factor (TGF) increased with LVPO, but were lower in the Wwp1-/- group.

Summary. The absence of Wwp1 reduced the development of LVH and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.

Files

Files (87.0 kB)

Name Size Download all
md5:f1c1fed43ed40a0fbb70c168188bbe4b
87.0 kB Download