Published January 14, 2021 | Version v1
Dataset Open

Data from: A reusable pipeline for large-scale fiber segmentation on unidirectional fiber beds using fully convolutional neural networks

  • 1. University of California, Berkeley
  • 2. Lawrence Berkeley National Laboratory

Description

Fiber-reinforced ceramic-matrix composites are advanced materials resistant to high temperatures, with application to aerospace engineering. Their analysis depends on the detection of embedded fibers, with semi-supervised techniques usually employed to separate fibers within the fiber beds. Here we present an open computational pipeline to detect fibers in ex-situ X-ray computed tomography fiber beds. To separate the fibers in these samples, we tested four different architectures of fully convolutional neural networks. When comparing our neural network approach to a semi-supervised one, we obtained Dice and Matthews coefficients greater than 92.28 ± 9.65%, reaching up to 98.42 ± 0.03%, showing that the network results are close to the human-supervised ones in these fiber beds, in some cases separating fibers that human-curated algorithms could not find. The software we generated in this project is open source, released under a permissible license, and can be adapted and re-used in other domains. Here you find the data resulting from this study.

Notes

We used twelve different datasets from Larson et al (2019) in our study. We kept the same folder identifiers used in their original data, for fast cross-reference. The filenames for each processed sample follow the structure `<NETWORK>-<Larson's sample folder>.zip`, where `<NETWORK>` can be `tiramisu`, `tiramisu_3d`, `unet`, `unet_3d`. For example, results for the sample 232p3, wet, obtained with the 2D U-net network are given in the file `unet-rec20160318_191511_232p3_2cm_cont__4097im_1500ms_ML17keV_6.h5.zip`.

The file `coefficients.zip` contains: 1. the training coefficients for each network, where filenames follow the structure `larson_<NETWORK>.hdf5`; 2. accuracy, loss, validation accuracy and validation loss we obtained during our training process; 3. filenames follow the structure `larson_<NETWORK>.hdf5-<MEASURE>.csv`, where `<MEASURE>` can be `accuracy`, `loss`, `val_accuracy`, `val_loss`, for accuracy, loss, validation accuracy and validation loss, respectively; 4. output of the training and prediction steps in our study, where filenames follow the structure `output.train_<NETWORK>.txt` and `output.predict_<NETWORK>.txt` for the training and prediction processes, respectively.

Funding provided by: Gordon and Betty Moore Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000936
Award Number: GBMF3834

Funding provided by: Alfred P. Sloan Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000879
Award Number: 2013-10-27

Files

coefficients.zip

Files (160.6 GB)

Name Size Download all
md5:94fbc966e0bdedfd12c8a5342fdccf50
696.3 MB Preview Download
md5:695dffae8e5a335d97a0998aeeaf5819
11.1 kB Preview Download
md5:11a514dffaaf31d5aae5051ef55d2408
1.1 GB Preview Download
md5:3dfbf707efa5d13160fc4a7735463ca2
1.9 GB Preview Download
md5:dbca1e6d31bc8f02a1926edde044e3bb
1.9 GB Preview Download
md5:76473ec578772d935d8b5a0ac4b2a636
1.9 GB Preview Download
md5:ded70f316aef088bcb7b1ea637073b6a
2.1 GB Preview Download
md5:e8bf56129306b34249ae02a74d845783
2.1 GB Preview Download
md5:c735957575e9d89877db2a3bd31265ba
2.3 GB Preview Download
md5:f4844502298cc3280ae2ff954fa5fea5
1.9 GB Preview Download
md5:e31bae4ab41731c80473c62cc37d00a0
1.9 GB Preview Download
md5:d79304e5fb41492b0f0f4feb3bedf439
2.0 GB Preview Download
md5:a77b84eeea171d8c5b80b467600811cf
2.0 GB Preview Download
md5:cdc009e10190300ae3dc7d850455120e
2.2 GB Preview Download
md5:5221a672cf7f2984d68223f742f2d917
2.5 GB Preview Download
md5:901bd2f0e5b2446329f506ba251006bd
4.8 GB Preview Download
md5:238f4c893728c2dbe0b02ea5bbaacd51
4.8 GB Preview Download
md5:b86c0f47315927035499eefe8b142a0f
4.9 GB Preview Download
md5:d89b4f1c58640d797bc2a7500696851a
5.0 GB Preview Download
md5:49ada85a898cb2397b4ed74413c1b4c5
5.1 GB Preview Download
md5:2702adc143b858d9a0208540b917bcd9
5.1 GB Preview Download
md5:30230d08164e7f3a7fa07e72de0e8db6
4.9 GB Preview Download
md5:025f50d100641b88ad843d20e7a38159
4.9 GB Preview Download
md5:06c414fa9eef4ee3d092407ded311124
5.1 GB Preview Download
md5:c6e038214563881e14cdfcf9aaddaf81
5.1 GB Preview Download
md5:2d24e1ca693eccaca3f4a767425b0312
5.2 GB Preview Download
md5:5038b7f60882cb8a987614ec0e165aaf
1.1 GB Preview Download
md5:34b6e5006a86b1888570de006b9dcfa6
1.9 GB Preview Download
md5:8be7f56e611696e2f55fb5a4ec9fc9ec
1.9 GB Preview Download
md5:ef78520797ba24e9a8537726e6b8f682
1.9 GB Preview Download
md5:1d64cc2a35456f14ddd477330edd4907
2.2 GB Preview Download
md5:560f3546d8afc25f1a08067789645b23
2.1 GB Preview Download
md5:c51533a25d5e7f4a3badaec825d82418
2.4 GB Preview Download
md5:2304add82495bcd79b5d99f75359dc0c
2.0 GB Preview Download
md5:456f6f89d691d1d3dd2d6d345df7caaa
1.9 GB Preview Download
md5:a2a42ec4f2d59b82f47dabc0ecca80ca
2.0 GB Preview Download
md5:9b263860fdc657bc60ecc93cd20edd63
1.9 GB Preview Download
md5:7ee39efe1aacf44ec6db79fee5573dfd
2.3 GB Preview Download
md5:5b2547693e7ddf8dbab3021d11f7d4f1
2.5 GB Preview Download
md5:91eb6c928496a50896c711d399035f3a
4.8 GB Preview Download
md5:4538e1532dacf443a62c42e12d016c01
4.7 GB Preview Download
md5:742a5b1d3b6b9cd9a85c119dc6543aa3
4.5 GB Preview Download
md5:365a4655842629f43bdab4a4d708674b
5.1 GB Preview Download
md5:cf9b81f3f4584e5d13316a055868b8b8
4.9 GB Preview Download
md5:4ca723308f0468c08b42621d54c5059a
5.2 GB Preview Download
md5:cf526004dea1f54f823f43277fd1d4bb
4.8 GB Preview Download
md5:1bd0b46fb2b79c858f0edb7c1eb2bc98
4.7 GB Preview Download
md5:f3cc4e334d082be2b529e53005103f92
4.8 GB Preview Download
md5:202d22c3f4e5db8e974c69df25932ad5
4.6 GB Preview Download
md5:828812580533ba91463da8179a9773fa
5.0 GB Preview Download