Software Open Access
Glenn Jocher; Yonghye Kwon; guigarfr; perry0418; Josh Veitch-Michaelis; Ttayu; Daniel Suess; Fatih Baltacı; Gabriel Bianconi; IlyaOvodov; Marc; e96031413; Chang Lee; Dustin Kendall; Falak; Francisco Reveriano; FuLin; GoogleWiki; Jason Nataprawira; Jeremy Hu; LinCoce; LukeAI; NanoCode012; NirZarrabi; Oulbacha Reda; Piotr Skalski; SergioSanchezMontesUAM; Shiwei Song; Thomas Havlik; Timothy M. Shead
This release is a minor update implementing numerous bug fixes, feature additions and performance improvements from https://github.com/ultralytics/yolov5 to this repo. Models remain unchanged from v9.0 release.
Branch NoticeThe ultralytics/yolov3 repository is now divided into two branches:
$ git clone https://github.com/ultralytics/yolov3 # master branch (default)
$ git clone -b archive https://github.com/ultralytics/yolov3 # archive branch
<img src="https://user-images.githubusercontent.com/26833433/100382066-c8bc5200-301a-11eb-907b-799a0301595e.png" width="800">
** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from google/automl at batch size 8.
Pretrained Checkpoints Model AP<sup>val</sup> AP<sup>test</sup> AP<sub>50</sub> Speed<sub>GPU</sub> FPS<sub>GPU</sub> params FLOPS YOLOv3 43.3 43.3 63.0 4.8ms 208 61.9M 156.4B YOLOv3-SPP 44.3 44.3 64.6 4.9ms 204 63.0M 157.0B YOLOv3-tiny 17.6 34.9 34.9 1.7ms 588 8.9M 13.3B AP<sup>test</sup> denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy. All AP numbers are for single-model single-scale without ensemble or TTA. Reproduce mAP by python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. Reproduce speed by python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
Test Time Augmentation (TTA) runs at 3 image sizes. Reproduce TTA** by python test.py --data coco.yaml --img 832 --iou 0.65 --augment
Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7
. To install run:
$ pip install -r requirements.txt
Name | Size | |
---|---|---|
ultralytics/yolov3-v9.1.zip
md5:03cb1c6ca8206cc435568a806e944a0d |
1.0 MB | Download |
All versions | This version | |
---|---|---|
Views | 4,472 | 22 |
Downloads | 84 | 0 |
Data volume | 59.0 MB | 0 Bytes |
Unique views | 3,900 | 20 |
Unique downloads | 77 | 0 |