Journal article Open Access

The influence of Ce3+ codoping and excitation scheme on spectroscopic properties of NaYF4:Yb3+,Ho3+

Pilch-Wrobel, Aleksandra; Zasada, Joanna; Bednarkiewicz, Artur

The possibility to design and intentionally tune the luminescent properties of phosphors, e.g. their emission colour, quantum yield and kinetic behavior, is  of fundamental significance and a  challenge for numerous applications. Usually, to obtain multicolour emission, multiple nanomaterials with different co-dopants combinations, sizes or chemical architectures are synthesized and characterized. Of special interest would be those materials, where on-demand and in-situ modi-fications of multicolour emission can be obtained by changing the external stimulus, such as magnetic field, temperature, excitation intensity or pulse width. Here we synthesize and evaluate luminescent NaYF4 nanoparticles doped Yb3+/Ho3+, whose red and green emission colour is modulated by variable concentration of Ce3+admixture, excitation pulse duration and temperature. In the first scenario (Yb3+/Ho3+only doping), such materials exhibit strong and stable green upconversion emission. Upon Ce3+co-doping, the red to green ratio (RGR) changed from 0,43 (for pristine dopants) to 4,23 (for 15%Ce3+co-doped samples). Moreover, the measurement performed with excitation pulse width modulation (PWM) enabled to increase contribution of red emission in-situ. For short excitation pulses, the green emission was observed, while for longer pulses the red emission started to dominate. Finally, the energy transfer in this tri-doped system demonstrated to be sus-ceptible to external temperature as well, with relative thermal sensitivity of 0,8%/K in biological range for 5%Ce3+doped sample. Detailed spectroscopic analysis including temperature dependent emission spectra, rise times and emission kinetics allow us to understand and propose the possible energy transfer mechanisms in this system.

Files (6.4 MB)
Name Size
Manuscript_revised_final.pdf
md5:78c31935d0fb003817f29648683d244d
2.3 MB Download
YbHoCe_data set.xlsx
md5:b43d9dd877e8b197f42f70d82459b85f
4.2 MB Download
  • [1] J.-W. Shen, J. Lu, J. Tu, X. Ouyang, H. Li, Enhanced 808 nm driven Ce3+ doped red-emitting upconversion nanocrystals by intercalated nanostructures, J. Mater. Chem. C. 4 (2016) 4905–4911. doi:10.1039/C6TC01430E. [2] S. Heer, K. Kömpe, H.U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater. 16 (2004) 2102–2105. doi:10.1002/adma.200400772. [3] J. Liao, D. Jin, C. Chen, Y. Li, J. Zhou, Helix Shape Power-Dependent Properties of Single Upconversion Nanoparticles, J. Phys. Chem. Lett. (2020). doi:10.1021/acs.jpclett.9b03838. [4] Z.Y. and T.Z. and Y.X. and W.L. and C.Q. and H.L. and S.Z. and J. Hao, Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping, Nanotechnology. 26 (2015) 385702. doi:10.1088/0957-4484/26/38/385702. [5] D. Gao, X. Zhang, W. Gao, Tuning upconversion emission by controlling particle shape in NaYF4 :Yb3+ /Er3+ nanocrystals, J. Appl. Phys. 111 (2012) 033505. doi:10.1063/1.3681293. [6] N. Niu, P. Yang, F. He, X. Zhang, S. Gai, C. Li, J. Lin, Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures, J. Mater. Chem. 22 (2012) 10889. doi:10.1039/c2jm31256e. [7] S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin, Advances in highly doped upconversion nanoparticles, Nat. Commun. 9 (2018) 2415. doi:10.1038/s41467-018-04813-5. [8] H. Qiu, C. Yang, W. Shao, J. Damasco, X. Wang, H. Ågren, P. Prasad, G. Chen, Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration, Nanomaterials. 4 (2014) 55–68. doi:10.3390/nano4010055. [9] F. Vetrone, R. Naccache, V. Mahalingam, C.G. Morgan, J.A. Capobianco, The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles, Adv. Funct. Mater. 19 (2009) 2924–2929. doi:10.1002/adfm.200900234. [10] O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A four-color colloidal multiplexing nanoparticle system, ACS Nano. 2 (2008) 120–124. doi:10.1021/nn7002458. [11] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals, J. Appl. Phys. 96 (2004) 661–667. doi:10.1063/1.1739523. [12] X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects, J. Phys. Chem. C. 111 (2007) 13611–13617. doi:10.1021/jp070122e. [13] M. Kamimura, A. Omoto, H.-C. Chiu, K. Soga, Enhanced Red Upconversion Emission of NaYF4 :Yb3+ , Er3+ , Mn2+ Nanoparticles for Near-Infrared Induced Photodynamic Therapy and Fluorescence Imaging, Chem. Lett. 46 (2017) 1076-1078. doi:10.1246/cl.170322. [14] G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, Y. Zhao, Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery, Adv. Mater. 24 (2012) 1226–1231. doi:10.1002/adma.201104741. [15] J. Tang, L. Chen, J. Li, Z. Wang, J. Zhang, L. Zhang, Y. Luo, X. Wang, M. Hong, X. Liu, J. Hao, Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4 :Yb,Er nanocrystals, Nanoscale. 7 (2015) 14752–14759. doi:10.1039/C5NR04125B. [16] G. Chen, H. Liu, G. Somesfalean, H. Liang, Z. Zhang, Upconversion emission tuning from green to red in Yb3+ /Ho3+ -codoped NaYF4 nanocrystals by tridoping with Ce3+ ions, Nanotechnology. 20 (2009) 385704. doi:10.1088/0957-4484/20/38/385704. [17] S. Liu, Y. Li, C. Zhang, L. Yang, T. Zhao, R. Zhang, C. Jiang, Upconversion color tuning in Ce3+-doped LiYF4:Yb3+/Ho3+@LiYF4 nanoparticles towards ratiometric fluorescence detection of chromium(III), J. Colloid Interface Sci. 493 (2017) 10–16. doi:10.1016/j.jcis.2017.01.022. [18] X. Liu, J. Qiu, X. Xu, D. Zhou, Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+/Yb3+ Tri-Doped NaYF4 Nanocrystals, J. Nanosci. Nanotechnol. 16 (2016) 3749–3753. doi:10.1166/jnn.2016.11810. [19] Y. Wang, Y. Li, D. Fan, Effects of Ce3+ Doping in Green-Red Emitting Upconversion Nanoparticles, ChemistrySelect. 2 (2017) 8874–8879. doi:10.1002/slct.201701994. [20] R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion, Nat. Nanotechnol. 10 (2015) 237–242. doi:10.1038/nnano.2014.317. [21] M. Dong, X. Li, F. Chi, X. Wei, M. Yin, Y. Chen, Trivalent Yb/Ho/Ce tri-doped core/shell NaYF4 nanoparticles for tunable upconversion luminescence from green to red, J. Rare Earths. 35 (2017) 629–636. doi:10.1016/S1002-0721(17)60956-6. [22] A. Pilch-Wrobel, B. Czaban, D. Wawrzyńczyk, A. Bednarkiewicz, Quantum yield measurements of Yb,Ho co-doped upconverting nanomaterials: The impact of methods, reference materials and concentration, J. Lumin. 198 (2018) 482–487. doi:10.1016/j.jlumin.2018.02.070. [23] A. Pilch, C. Würth, M. Kaiser, D. Wawrzyńczyk, M. Kurnatowska, S. Arabasz, K. Prorok, M. Samoć, W. Strek, U. Resch-Genger, A. Bednarkiewicz, Bioimaging: Shaping Luminescent Properties of Yb3+ and Ho3+ Co-Doped Upconverting Core-Shell β-NaYF4 Nanoparticles by Dopant Distribution and Spacing (Small 47/2017), Small. 13 (2017) 1770246. doi:10.1002/smll.201770246. [24] M.D. Chambers, D.R. Clarke, Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry, Annu. Rev. Mater. Res. 39 (2009) 325–359. doi:10.1146/annurev-matsci-112408-125237.

24
11
views
downloads
Views 24
Downloads 11
Data volume 34.5 MB
Unique views 21
Unique downloads 11

Share

Cite as