There is a newer version of the record available.

Published December 29, 2020 | Version v1
Preprint Open

Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies

Description

Popovych Igor L., Gozhenko Anatoliy I., Badiuk Nataliya S., Zukow Walery, Yanchij Roman I., Lapovets’ Natalia Ye., Lapovets’ Lyubov Ye., Akimova Viorica M., Nahurna Yaryna V., Martinova Olha I., Vivchar Roman Ya., Chendey Ivanna V., Ruzhylo Sofiya V. Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies. Preprint. 2020. 1-18. DOI http://dx.doi.org/10.5281/zenodo.4396371

 

 

© The Authors 2020;

 

This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland

 

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

 

 

Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies

 

Igor L. Popovych1,3, Anatoliy I. Gozhenko1, Nataliya S. Badiuk1, Walery Zukow2, Roman I. Yanchij3, Natalia Ye. Lapovets’4, Lyubov Ye. Lapovets’4, Viorica M. Akimova4, Yaryna V. Nahurna4, Olha I. Martinova4, Roman Ya. Vivchar4, Ivanna V. Chendey4, Sofiya V. Ruzhylo5

 

1State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine prof.gozhenko@gmail.com

2Nicolaus Copernicus University, Torun, Poland w.zukow@wp.pl

3OO Bohomolets’ Institute of Physiology, Kyїv, Ukraine i.popovych@biph.kiev.ua

4Danylo Halyts’kyǐ National Medical University, L’viv, Ukraine lapovets@ukr.net

5Ivan Franko Pedagogical University, Drohobych, Ukraine doctor-0701@ukr.net

 

Corresponding Author Walery Zukow w.zukow@wp.pl

 

 

 

 

 

Abstract

Background. The effect of geomagnetism on human immunity has so far been studied through long-term observations. We set ourselves the goal of detecting the immediate immunotropic effects of the Earth's magnetic field by analyzing the relationships between immunity parameters and the geomagnetic Ap-index. Material and methods. The object of observation were 74 patients with multiple sclerosis and 14 patients with radiculopathies, who in the period from September 2014 to November 2018 conducted a one-time assessment of immune status by the relative content in the blood of lymphocytes of CD3+, CD4+, CD8+, CD25+, CD56+ and CD19+ phenotypes and serum level of Immunoglobulines M, G, A as well as CIC and IL-1β. On the day of blood capture and during the previous 7 days, retrospectively recorded the geomagnetic Ap-index, using a publicly available information resource http://wdc.kugi.kyoto-u.ac.jp/kp/index.html. Results. During the week, the average level of Ap-index ranged from 12÷20 nT. The correlation coefficients between the Ap-index on the day of blood collection and 1, 3 and 7 days before it and the level of CD3+CD4+ lymphocytes were -0,57; -0,48; -0,55 і -0,52 respectively, while on other days were in the range of -0,35÷0,05. In contrast, with the level of CD56+ lymphocytes Ap-index correlates positively and almost mirror (0,56; 0,43; 0,54 і 0,57 respectively and 0,34÷-0,08), due to the reciprocity of their levels (r=-0,80). Also positive, but much weaker, correlates the Ap-index with the level of CD3+CD25+ lymphocytes (0,35; 0,25; 0,45 і 0,31 respectively and 0,22÷-0,14). In contrast, with the level of IL-1β Ap-index correlates significantly only on the day of blood collection and 2 days before (r=0,21 and 0,31 respectively), and with other registered parameters of immunity the correlation is insignificant. The canonical correlation between Ap-indices for 7 days before and on the day of blood collection, on the one hand, and the levels of CD4+, CD56+, CD25+ and CD8+ lymphocytes and the concentration of IgM and IL-1β - on the other hand, was very strong: R=0,741; R2=0,549; χ2(42)=130; p<10-6. Conclusion. Disturbances of the geomagnetic field (Ap-index) has a significant immediate modulating effect on the level of immune parameters in the blood, mostly T-helpers (suppressor) and natural killers (enhancing).

 

Key words: geomagnetic Ap-index; immune status; multiple sclerosis; radiculopathy.

 

 

References

 

  1. Abdollahi F, Sajedi SA. Correlation of multiple sclerosis (MS) incidence trends with solar and geomagnetic indices: Time to revise the method of reporting MS epidemiological data. Iran J Neurol. 2014; 13(2): 64-69.
  2. Babayev ES, Allahverdiyeva AA. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: some of results of the Azerbijani studies. Advances in Space Research. 2007; 40: 1941–1951.
  3. Baevsky RM, Petrov VM, Cornelissen G, Halberg F, Orth-Gomer K, Akerstedt T, Otsuka K, Breus T, Siegelova J, Dusek J, Fiser B. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno). 1997; 70(4–5): 201–206.
  4. Bonhomme-Faivre L, Marion S, Forestier F, Santini R, Auclair H. Effects of electromagnetic fields on the immune systems of occupationally exposed humans and mice. Arch Environ Health. 2003; 58(11): 712-717. doi:10.3200/AEOH.58.11.712-717.
  5. Breus TK, Ozheredov VA, Syutkina EV, Rogoza AN. Some aspects of the biological effects of space weather. J Atmos Sol-Terr Phy. 2008; 70(2–4): 436–441.
  6. Breus TK, Pimenov KY, Cornélissen G, Halberg E, Syutkina EV, Baevsky RM, Petrov VM, Orth-Gómer K, Akerstedt T, Otsuka K, Watanabe Y, Chibisov SM. The biological effects of solar activity. Biomed Pharmacother. 2002; 56 Suppl 2: 273s–283s.
  7. Burch JB, Reif JS, Yost MG. Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett. 1999; 266: 209–12. 10.1016/S0304-3940(99)00308-0.
  8. Chizhevsky AL. The Terrestrial Echo of Solar Storms [in Russian]. Moscow. Mysl; 1976: 366 p.
  9. Chizhevsky AL. The Cosmic Pulse of Life. The Earth is Embraced by the Sun. Heliotaraxia [in Russian]. Moscow. Mysl; 1995: 766 p.
  10. Christiansen CF, Christensen S, Farkas DK, Miret M, Sorensen HT, Pedersen L. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 2010; 35(4): 267–274. doi: 10.1159/000320245.
  11. Cocek A, Hahn A, Ambrus M, Dohnalova A, Jandova A, Pokorny J. Changes of leukocyte adherence ability under the influence of magnetic field in the course of a treatment of patients with laryngeal and pharyngeal carcinoma. Electromagn Biol Med. 2008; 27(3): 277–288. doi: 10.1080/15368370802277724.
  12. Consolini G, Kretzschmar M, Lui ATY et al. On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J Geophys Res Space Phys. 2005; 110: A07202. 10.1029/2004JA010947.
  13. Conti P, Gigante GE, Alesse E, Cifone MG, Fieschi C, Reale M, Angeletti PU. A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett. 1985; 181: 28–32.
  14. Cuzzocrea S, Reiter RJ. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol. 2001; 426: 1–10. 10.1016/S0014-2999(01) 01175-X.
  15. Davis TN, Sugiura M. Auroral electrojet activity index AE and its universal time variations. J Geophys Res. 1966; 71: 785–801. 10.1029/JZ071i003p00785.
  16. Dubrov A. The Geomagnetic Field and Life: Geomagnetobiology. Springer; 2013.
  17. Esquifino AI, Pandi-Perumal SR, Cardinali DP. Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev. 2004; 4: 423–33. 10.1016/j.cair.2004.08.002].
  18. Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C, Pinsky C, LaBella FS, Krzystyniak K. Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A. 1998; 54: 63–76.
  19. Frahm J, Lantow M, Lupke M, Weiss DG, Simkó M. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J Cell Biochem. 2006; 99(1): 168-177. doi:10.1002/jcb.20920.
  20. Ha E, Choe BK, Jung KH et al. Positive relationship between melatonin receptor type 1B polymorphism and rheumatoid factor in rheumatoid arthritis patients in the Korean population. J Pineal Res. 2005; 39: 201–2055. 10.1111/j.1600-079X. 2005.00237.x.
  21. Halberg F, Cornélissen G, Otsuka K, Watanabe Y, et al. Cross-spectrally coherent ~10.5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuro Endocrinol Lett. 2000; 21(3): 233–258.
  22. Hanslmeier A. The Sun and Space Weather. 2. Dordrecht: Springer; 2007.
  23. Jandova A, Mhamdi L, Nedbalova M, Cocek A, Trojan S, Dohnalova A, Pokorny J. Effects of Magnetic Field 0.1 and 0.05 mT on Leukocyte Adherence Inhibition.Electromagn Biol Med. 2005; 24(3): 283–292. doi: 10.1080/15368370500379681.
  24. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA. 1992; 89(16): 7683–7687. doi: 10.1073 /pnas.89. 16. 7683.
  25. Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JC, Kirschvink SJ. Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics. 1992; Suppl 1: 101–113.
  26. Kissinger J, McPherron RL, Hsu TS et al. Steady magnetospheric convection and stream interfaces: relationship over a solar cycle. J Geophys Res Space Phys. 2011; 116: A00I19. 10.1029/2010JA015763.
  27. Kul’chyns’kyi AB, Gozhenko AI, Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 3. Correlations between parameters EEG, HRV and Immunogram. Journal of Education, Health and Sport. 2017; 7(3): 53-71.
  28. Kul’chyns’kyi AB, Kovbasnyuk MM, Kyjenko VM., Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016; 6(10): 377-401.
  29. Kul’chyns’kyi AB, Kyjenko VM, Zukow W, Popovych IL. Causal neuro-immune relationships at patients with chronic pyelonephritis and cholecystitis. Correlations between parameters EEG, HRV and white blood cell count. Open Medicine. 2017; 12(1): 201-213.
  30. Kul’chyns’kyi AB, Zukow W, Korolyshyn TA, Popovych IL. Interrelations between changes in parameters of HRV, EEG and humoral immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(9): 439-459.
  31. Lapovets’ LYe, Lutsyk BD. Laboratory Immunology [in Ukrainian]. Kyiv; 2004: 173 p.
  32. Lebel RM, Eissa A, Seres P, Blevins G, Wilman AH. Quantitative high-field imaging of sub-cortical gray matter in multiple sclerosis. Mult Scler. 2012; 18(4): 433–441. doi: 10.1177 /1352458511428464.
  33. LeVine SM, Chakrabarty A. The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NYAS. 2004; 1012: 252–266. doi: 10.1196 /annals. 1306.021.
  34. Lowell WE, Davis GE, Jr. The light of life: Evidence that the sun modulates human lifespan. Med Hypotheses. 2008; 70(3): 501–507.
  35. Lupke M, Frahm J, Lantow M, et al. Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta. 2006; 1763(4): 402-412. doi: 10.1016/j.bbamcr. 2006.03.003.
  36. Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med. 2014; 3(2): 40-55. doi:10.7453/gahmj.2014.008.
  37. Mulligan BP, Hunter MD, Persinger MA. Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: replication of the Azerbaijani studies. Advances in Space Research. 2010; 45: 940–948.
  38. Nance DM, Sanders VM. Autonomic innervation and regulation of immune system (1987-2007). Brain Behav Immun. 2007; 21(6): 736-745.
  39. Novik OB, Smirnov FA. Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer. Biofizika. 2013; 58(3): 554–560.
  40. Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth's surface. Surv Geophys. 2006; 27: 557–95. 10.1007/s10712-006-9010-7.
  41. Pinchuk VG, Gluzman DV. Immunocytochemi and Monoclonal Antibodies in Onkohematology [in Russian]. Kyiv. Naukova dumka; 1990: 230 p.
  42. Popovych IL, Gozhenko AI, Zukow W, Polovynko IS. Variety of Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. Scholars' Press. Riga; 2020: 172 p. doi http://dx.doi.org/10.5281/zenodo.3822074.
  43. Popovych IL, Lukovych YuS, Korolyshyn TA, Barylyak LG, Kovalska LB, Zukow W. Relationship between the parameters heart rate variability and background EEG activity in healthy men. Journal of Health Sciences. 2013; 3(4): 217-240.
  44. Popovych IL, Kozyavkina OV, Kozyavkina NV, Korolyshyn TA, Lukovych YuS, Barylyak LG. Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology. 2014; 46(2): 139-148.
  45. Popovych IL, Kul’chyns’kyi AB, Korolyshyn TA, Zukow W. Interrelations between changes in parameters of HRV, EEG and cellular immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(10): 11-23.
  46. Popovych IL, Kul’chyns’kyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA. Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(2): 135-156.
  47. Pulkkinen TI, Tanskanen EI, Viljanen A et al. Auroral electrojets during deep solar minimum at the end of solar cycle 23. J Geophys Res Space Phys. 2011; 116: A04207. 10.1029/2010 JA016098.
  48. Rajaram M, Mitra S. Correlation between convulsive seizure and geomagnetic activity. Neurosci Lett. 1981; 24(2): 187–191.
  49. Remans PH, van Oosterhout M, Smeets TJ et al. Intracellular free radical production in synovial T lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2005; 52: 2003–2009. 10.1002/art.21111.
  50. Sajedi SA, Abdollahi F. Geomagnetic disturbances may be environmental risk factor for multiple sclerosis: an ecological study of 111 locations in 24 countries. BMC Neurol. 2012; 12: 100. doi:10.1186/1471-2377-12-100.
  51. Sajedi SA, Abdollahi F. Which Environmental Factor Is Correlated with Long-Term Multiple Sclerosis Incidence Trends: Ultraviolet B Radiation or Geomagnetic Disturbances? Mult Scler Int. 2017; 2017: 4960386. doi:10.1155/2017/4960386.
  52. Simko M, Mattsson MO. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem. 2004; 93(1): 83–92. doi: 10.1002/jcb.20198.
  53. Stoupel E. The effect of geomagnetic activity on cardiovascular parameters. Biomed Pharmacother. 2002; 56 Suppl 2: 247s–256s.
  54. Stoupel E, Petrauskiene J, Abramson E, Kalediene R, Sulkes J. Distribution of monthly deaths, solar (SA) and geomagnetic (GMA) activity: their interrelationship in the last decade of the second millennium: the Lithuanian study 1990–1999. Biomed Pharmacother. 2002; 56 Suppl 2: 301s–308s.
  55. Thayer JF, Sternberg EM. Neural aspects of immunomodulation: Focus on the vagus nerve. Brain Behav Immun. 2010; 24(8): 1223-1228.
  56. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007; 117(2): 289-296.
  57. Vencloviene J, Babarskiene R, Slapikas R, Sakalyte G. The association between phenomena on the sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int J Biometeorol. 2013; 57(5): 797–804.
  58. Vencloviene J, Babarskiene R, Milvidaite I, Kubilius R, Stasionyte J. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes. Int J Biometeorol. 2014; 58(6): 1295-1303. doi:10.1007/s00484-013-0725-0
  59. Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992; 6(13): 3177–3185.
  60. Wing S, Rider LG, Johnson JR, et al. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence? BMJ Open. 2015; 5(5): e006636. doi:10.1136/bmjopen-2014-006636.
  61. Zaporozhan V, Ponomarenko A. Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology. Int J Environ Res Public Health. 2010; 7(3): 938-965. doi:10.3390/ijerph7030938.
  62. Zhadin MN. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001; 22(1): 27-45. doi:10.1002/1521-186x(200101)22:1 <27:aid-bem4> 3.0.co;2-2

 

Notes

Popovych Igor L., Gozhenko Anatoliy I., Badiuk Nataliya S., Zukow Walery, Yanchij Roman I., Lapovets' Natalia Ye., Lapovets' Lyubov Ye., Akimova Viorica M., Nahurna Yaryna V., Martinova Olha I., Vivchar Roman Ya., Chendey Ivanna V., Ruzhylo Sofiya V. Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies. Preprint. 2020. 1-18. DOI http://dx.doi.org/10.5281/zenodo.4396371

Files

Lapov_new.pdf

Files (864.7 kB)

Name Size Download all
md5:3d6a1ec07f6be51968ecdf992cb595ae
864.7 kB Preview Download

Additional details

References

  • 1.Abdollahi F, Sajedi SA. Correlation of multiple sclerosis (MS) incidence trends with solar and geomagnetic indices: Time to revise the method of reporting MS epidemiological data. Iran J Neurol. 2014; 13(2): 64-69. 2.Babayev ES, Allahverdiyeva AA. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: some of results of the Azerbijani studies. Advances in Space Research. 2007; 40: 1941–1951. 3.Baevsky RM, Petrov VM, Cornelissen G, Halberg F, Orth-Gomer K, Akerstedt T, Otsuka K, Breus T, Siegelova J, Dusek J, Fiser B. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno). 1997; 70(4–5): 201–206. 4.Bonhomme-Faivre L, Marion S, Forestier F, Santini R, Auclair H. Effects of electromagnetic fields on the immune systems of occupationally exposed humans and mice. Arch Environ Health. 2003; 58(11): 712-717. doi:10.3200/AEOH.58.11.712-717. 5.Breus TK, Ozheredov VA, Syutkina EV, Rogoza AN. Some aspects of the biological effects of space weather. J Atmos Sol-Terr Phy. 2008; 70(2–4): 436–441. 6.Breus TK, Pimenov KY, Cornélissen G, Halberg E, Syutkina EV, Baevsky RM, Petrov VM, Orth-Gómer K, Akerstedt T, Otsuka K, Watanabe Y, Chibisov SM. The biological effects of solar activity. Biomed Pharmacother. 2002; 56 Suppl 2: 273s–283s. 7.Burch JB, Reif JS, Yost MG. Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett. 1999; 266: 209–12. 10.1016/S0304-3940(99)00308-0. 8.Chizhevsky AL. The Terrestrial Echo of Solar Storms [in Russian]. Moscow. Mysl; 1976: 366 p. 9.Chizhevsky AL. The Cosmic Pulse of Life. The Earth is Embraced by the Sun. Heliotaraxia [in Russian]. Moscow. Mysl; 1995: 766 p. 10.Christiansen CF, Christensen S, Farkas DK, Miret M, Sorensen HT, Pedersen L. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 2010; 35(4): 267–274. doi: 10.1159/000320245. 11.Cocek A, Hahn A, Ambrus M, Dohnalova A, Jandova A, Pokorny J. Changes of leukocyte adherence ability under the influence of magnetic field in the course of a treatment of patients with laryngeal and pharyngeal carcinoma. Electromagn Biol Med. 2008; 27(3): 277–288. doi: 10.1080/15368370802277724. 12.Consolini G, Kretzschmar M, Lui ATY et al. On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J Geophys Res Space Phys. 2005; 110: A07202. 10.1029/2004JA010947. 13.Conti P, Gigante GE, Alesse E, Cifone MG, Fieschi C, Reale M, Angeletti PU. A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett. 1985; 181: 28–32. 14.Cuzzocrea S, Reiter RJ. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol. 2001; 426: 1–10. 10.1016/S0014-2999(01) 01175-X. 15.Davis TN, Sugiura M. Auroral electrojet activity index AE and its universal time variations. J Geophys Res. 1966; 71: 785–801. 10.1029/JZ071i003p00785. 16.Dubrov A. The Geomagnetic Field and Life: Geomagnetobiology. Springer; 2013. 17.Esquifino AI, Pandi-Perumal SR, Cardinali DP. Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev. 2004; 4: 423–33. 10.1016/j.cair.2004.08.002]. 18.Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C, Pinsky C, LaBella FS, Krzystyniak K. Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A. 1998; 54: 63–76. 19.Frahm J, Lantow M, Lupke M, Weiss DG, Simkó M. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J Cell Biochem. 2006; 99(1): 168-177. doi:10.1002/jcb.20920. 20.Ha E, Choe BK, Jung KH et al. Positive relationship between melatonin receptor type 1B polymorphism and rheumatoid factor in rheumatoid arthritis patients in the Korean population. J Pineal Res. 2005; 39: 201–2055. 10.1111/j.1600-079X. 2005.00237.x. 21.Halberg F, Cornélissen G, Otsuka K, Watanabe Y, et al. Cross-spectrally coherent ~10.5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuro Endocrinol Lett. 2000; 21(3): 233–258. 22.Hanslmeier A. The Sun and Space Weather. 2. Dordrecht: Springer; 2007. 23.Jandova A, Mhamdi L, Nedbalova M, Cocek A, Trojan S, Dohnalova A, Pokorny J. Effects of Magnetic Field 0.1 and 0.05 mT on Leukocyte Adherence Inhibition.Electromagn Biol Med. 2005; 24(3): 283–292. doi: 10.1080/15368370500379681. 24.Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA. 1992; 89(16): 7683–7687. doi: 10.1073 /pnas.89. 16. 7683. 25.Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JC, Kirschvink SJ. Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics. 1992; Suppl 1: 101–113. 26.Kissinger J, McPherron RL, Hsu TS et al. Steady magnetospheric convection and stream interfaces: relationship over a solar cycle. J Geophys Res Space Phys. 2011; 116: A00I19. 10.1029/2010JA015763. 27.Kul'chyns'kyi AB, Gozhenko AI, Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 3. Correlations between parameters EEG, HRV and Immunogram. Journal of Education, Health and Sport. 2017; 7(3): 53-71. 28.Kul'chyns'kyi AB, Kovbasnyuk MM, Kyjenko VM., Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016; 6(10): 377-401. 29.Kul'chyns'kyi AB, Kyjenko VM, Zukow W, Popovych IL. Causal neuro-immune relationships at patients with chronic pyelonephritis and cholecystitis. Correlations between parameters EEG, HRV and white blood cell count. Open Medicine. 2017; 12(1): 201-213. 30.Kul'chyns'kyi AB, Zukow W, Korolyshyn TA, Popovych IL. Interrelations between changes in parameters of HRV, EEG and humoral immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(9): 439-459. 31.Lapovets' LYe, Lutsyk BD. Laboratory Immunology [in Ukrainian]. Kyiv; 2004: 173 p. 32.Lebel RM, Eissa A, Seres P, Blevins G, Wilman AH. Quantitative high-field imaging of sub-cortical gray matter in multiple sclerosis. Mult Scler. 2012; 18(4): 433–441. doi: 10.1177 /1352458511428464. 33.LeVine SM, Chakrabarty A. The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NYAS. 2004; 1012: 252–266. doi: 10.1196 /annals. 1306.021. 34.Lowell WE, Davis GE, Jr. The light of life: Evidence that the sun modulates human lifespan. Med Hypotheses. 2008; 70(3): 501–507. 35.Lupke M, Frahm J, Lantow M, et al. Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta. 2006; 1763(4): 402-412. doi: 10.1016/j.bbamcr. 2006.03.003. 36.Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med. 2014; 3(2): 40-55. doi:10.7453/gahmj.2014.008. 37.Mulligan BP, Hunter MD, Persinger MA. Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: replication of the Azerbaijani studies. Advances in Space Research. 2010; 45: 940–948. 38.Nance DM, Sanders VM. Autonomic innervation and regulation of immune system (1987-2007). Brain Behav Immun. 2007; 21(6): 736-745. 39.Novik OB, Smirnov FA. Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer. Biofizika. 2013; 58(3): 554–560. 40.Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth's surface. Surv Geophys. 2006; 27: 557–95. 10.1007/s10712-006-9010-7. 41.Pinchuk VG, Gluzman DV. Immunocytochemi and Monoclonal Antibodies in Onkohematology [in Russian]. Kyiv. Naukova dumka; 1990: 230 p. 42.Popovych IL, Gozhenko AI, Zukow W, Polovynko IS. Variety of Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. Scholars' Press. Riga; 2020: 172 p. doi http://dx.doi.org/10.5281/zenodo.3822074. 43.Popovych IL, Lukovych YuS, Korolyshyn TA, Barylyak LG, Kovalska LB, Zukow W. Relationship between the parameters heart rate variability and background EEG activity in healthy men. Journal of Health Sciences. 2013; 3(4): 217-240. 44.Popovych IL, Kozyavkina OV, Kozyavkina NV, Korolyshyn TA, Lukovych YuS, Barylyak LG. Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology. 2014; 46(2): 139-148. 45.Popovych IL, Kul'chyns'kyi AB, Korolyshyn TA, Zukow W. Interrelations between changes in parameters of HRV, EEG and cellular immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(10): 11-23. 46.Popovych IL, Kul'chyns'kyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA. Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(2): 135-156. 47.Pulkkinen TI, Tanskanen EI, Viljanen A et al. Auroral electrojets during deep solar minimum at the end of solar cycle 23. J Geophys Res Space Phys. 2011; 116: A04207. 10.1029/2010 JA016098. 48.Rajaram M, Mitra S. Correlation between convulsive seizure and geomagnetic activity. Neurosci Lett. 1981; 24(2): 187–191. 49.Remans PH, van Oosterhout M, Smeets TJ et al. Intracellular free radical production in synovial T lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2005; 52: 2003–2009. 10.1002/art.21111. 50.Sajedi SA, Abdollahi F. Geomagnetic disturbances may be environmental risk factor for multiple sclerosis: an ecological study of 111 locations in 24 countries. BMC Neurol. 2012; 12: 100. doi:10.1186/1471-2377-12-100. 51.Sajedi SA, Abdollahi F. Which Environmental Factor Is Correlated with Long-Term Multiple Sclerosis Incidence Trends: Ultraviolet B Radiation or Geomagnetic Disturbances? Mult Scler Int. 2017; 2017: 4960386. doi:10.1155/2017/4960386.