Published December 24, 2020 | Version v1
Journal article Open

Optimal stabilization algorithm for production line flow parameters

  • 1. National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
  • 2. V.N. Karazin Kharkiv National University

Description

Context. A method for constructing an algorithm for stabilizing the interoperability of a production line is considered. The object of the study was a model of a multi-operational production line. 
Objective. The goal of the work is to develop a method for constructing an optimal algorithm for stabilizing the flow parameters of a production line, which provides asymptotic stability of the state of flow parameters for a given quality of the process. 
Method.  A  method for constructing an algorithm for stabilizing the level of interoperative backlogs of a  multi-operational production line is proposed. The stabilization algorithm is based on a two-moment PDE-model of the production line, which made it possible to represent the production line in the form of a complex dynamic distributed system. This representation made it possible to define the stabilizing control in the form of a function that depends not only on time but also on the coordinates characterizing the location of technological equipment along the production line.  The use of the method of  Lyapunov functions made it possible to synthesize the optimal stabilizing control of the state of interoperation backlogs at technological operations of the production line, which ensures the asymptotic stability of the given unperturbed state of the flow parameters of the production line at the lowest cost of technological resources spent on the formation of the control action. The requirement for the best quality of the transition process from a  disturbed state to an unperturbed state is expressed by the quality integral,  which depends both on the magnitude of the disturbances that have arisen and on the magnitude of the stabilizing controls aimed at eliminating these disturbances. 
Results.  On the basis of the developed method for constructing an algorithm for stabilizing the state of flow parameters of a production line, an algorithm for stabilizing the value of interoperation backlogs at technological operations of a production line is synthesized. 
Conclusions. The use of the method of Lyapunov functions in the synthesis of optimal stabilizing control of the flow parameters of the production line makes it possible to provide asymptotic damping of the arising disturbances of the flow parameters with the least cost of technological resources spent on the formation of the control action. It is shown that in the problem of stabilizing the state of interoperative backlogs, the stabilizing value of the control is proportional to the value of the arising disturbance. The proportionality coefficient is determined through the coefficients of the quality integral and the Lyapunov function. The prospect of further research is the development of a method for constructing an algorithm for stabilizing the productivity of technological operations of a production line. 

Files

2020_riu_PiKhKa.pdf

Files (588.7 kB)

Name Size Download all
md5:ce6a301fea253adee552eb259689cc7b
588.7 kB Preview Download

Additional details

References

  • 1. Vollmann T. E. Manufacturing Planning and Control for Supply Chain Management. / T. E. Vollmann, L. Berry, F. R. Jacobs. – New York : McGraw-Hill, 2005. –520 p
  • 2. Perdaen D. Controlling a re-entrant manufacturing line via the push-pull point. / D. Perdaen, D. Armbruster, K. Kempf, E. Lefeber // International Journal of Production Research. – 2008. – № 46 (16). – P.4521–4536. DOI: 10.1080/00207540701258051
  • 3. Forrester J. W. Industrial Dynamics / J. W. Forrester. – Cambridge : MIT, Press, 1961. –464 p
  • 4. Pihnastyi O. M. Statistical theory of control systems of the flow production / O. M. Pihnastyi. – Lap Lambert Academic Publishing, 2018. – 436 p
  • 5. Armbruster D. Continuous models for production flows / D. Armbruster, C. Ringhofer, T. J. Jo // American Control Conference. Boston, MA, USA. – 2004. – № 5. – P. 4589– 4594. DOI: 10.1109/ACC.2004.182675
  • 6. Schmitz J. P. Chaos in Discrete Production Systems? / J. P. Schmitz, D. A. Beek, J. E. Rooda // Journal of Manu- facturing Systems. –2002. – №21 (3). – P. 236–246. DOI: 10.1016/S0278-6125(02)80164-9
  • 7. Bramson M. Stability of queueing networks, lecture notes in mathematics / M. Bramson // Journal of Probability Sur- veys. – 2008. – № 5. – P. 169–345. DOI: 10.1214/08-PS137. https://projecteuclid.org/euclid.ps/1220879338
  • 8. Tian F. An iterative approach to item-level tactical produc- tion and inventory planning / F. Tian, S. P. Willems, K. G. Kempf // International Journal of Production Econom- ics, – 2011. – № 133. – P.439–450. DOI: 10.1016/j.ijpe.2010.07.011
  • 9. Liang Z. System-theoretic properties of Production Lines / Z. Liang // Doctoral dissertation, University of Michigan. 2009. –274 p. http://hdl.handle.net/2027.42/63812
  • 10. Pihnastyi O. Statistical validity and derivation of balance equations for the two-level model of a production line / O. Pihnastyi // Eastern-European Journal of Enterprise Tech- nologies. – 2016. – 5(4(83)). – P. 17–22. DOI: 10.15587/1729-4061.2016.81308
  • 11. Evaluation and comparison of production schedules / [K. Kempf, R. Uzsoy, St. Smith, K. Gary] // Computers in Industry. – 2000. – 42(2–3). – P. 203–220. DOI: 10.1016/S0166-3615(99)00071-8
  • 12. Cassandras C. G. Perturbation analysis for online control and optimization of stochastic fluid models / [C. G. Cassan- dras, Y. Wardi, B. Melamed et al.] // Transactions on Auto- matic Control. – 2002. – № 47 (8). – P. 1234–1248. DOI: 10.1109/TAC.2002.800739.
  • 13. Christofides P. Robust control of hyperbolic PDE systems / P. Christofides, P. Daoutidis // Chemical Engineering Sci- ence. –1998. – №53(1). –P. 85–105.
  • 14. Karmarkar U. S. Capacity Loading and Release Planning with Work-in-Progress (WIP) and Leadtimes / U. S. Kar- markar // Journal of Manufacturing and Operations Man- agement. – 1989. – № 2. – P. 105–123. https://www.iaorifors.com/paper/3710
  • 15. Selçuk B. Work-in-process clearing in supply chain opera- tions planning / B. Selçuk, J. Fransoo, A. Kok // IIE Trans- actions. – 2006. – № 40(3). – P. 206–220. DOI: 10.1080/07408170701487997
  • 16. Gross D. Fundamentals of Queueing Theory / D. Gross, C. M. Harris. – New York, 1974. –490 p.
  • 17. Ramadge P. J. The control of discrete event systems / P. J. Ramadge, W. M. Wonham // Proceedings of IEEE. – 1989. – № 77(1). – P. 81–98. DOI: 10.1109/5.21072
  • 18. Wonham W. Supervisory Control of Discrete-Event Sys- tems: A Brief History – 1980-2015 / W. Wonham, K. Cai, K. Rudie// 20th IFAC World Congress IFAC-PapersOnLine. –2017. – № 50(1). – P. 1791–1797. DOI: 10.1016/j.ifacol.2017.08.164
  • 19. Pihnastyi O. Optimal Control Problem for a Conveyor-Type Production Line / O. M. Pihnastyi, V. D. Khodusov // Cy- bern. Syst. Anal. – 2018. – №54(5). – P.744–753. DOI: 10.1007/s10559-018-0076-2
  • 20. Pihnastyi O. M. Using pde model and system dynamics model for describing multi-operation production lines / O. Pihnastyi, D. Yemelianova, D. Lysytsia // Eastern- European Journal of Enterprise Technologies. – 2020. – №4 (4(106)). – P. 54–60. DOI: 10.15587/1729- 4061.2020.210750
  • 21. Takeda H. The Synchronized Production System / H. Ta- keda. – London : Kogan Page Ltd, 2006. –264 p.
  • 22. Chankov S. Influencing factors of synchronization in manu- facturing systems / S. Chankov, M. Hütt, J. Bendul // Inter- national Journal of Production Research. – 2018. – № 56 (14). – P. 4781–4801. DOI: 10.1080/00207543.2017.1400707
  • 23. Kempf K. Simulating semiconductor manufacturing sys- tems: successes, failures and deep questions / K. Kempf // Proceedings of the 1996 Winter Simulation Conference, In- stitute of Electrical and Electronics Engineers. – Piscataway, New Jersey. – 1996. – P. 3–11. DOI: 10.1109/WSC.1996.873254
  • 24. Bitran G. Hierarchical production planning: a two-stage system / G. Bitran, E. Haas, A. Hax // Operations Re- search. – 1982. – № 30. – P. 232–251. DOI: 10.1287/opre.30.2.232
  • 25. Pihnastyi O. M. Stochastic equation of the technological process / O. M. Pihnastyi, V. D. Khodusov // International Conference on System analysis & Intelligent computing. – 2018. – P.64–67. DOI:10.1109/SAIC.2018.8516833