Published February 18, 2004 | Version v1
Journal article Open

Optical Systems in Ultrafast Biophotonics

  • 1. lab. Curien. CNRS UJM UdL; Saint-Etienne; France

Contributors

Contact person:

  • 1. lab. Curien. CNRS UJM UdL; Saint-Etienne; France

Description

In the field of biophotonics the main goals are the control and processing of in vivo biological tissues and the monitoring of biomolecule dynamics. Two particular pitfalls are present: the dynamic multiscale organization and the photostress of the medium. Until now the state of the art of the pico-femtosecond systems designed to these applications shows that the changing laser technology has been only used as an add-on. Our approach is based on a bottom-up procedure and on the medium-centered knowledge. The range of neurobiological applications of ultrafast photonics extends from TRP (time-resolved propagation) to linear and non-linear TRE (time-resolved emission). The device combines a one kilohertz chirp pulse amplification laser system and a single shot streak camera. For discrete wavelength applications (TRE), the set-up is a SHG/OPG/OPA3/SHG design. In the case of TRP, the beam is focused into pure water to generate a white light continuum. After propagation through tissue, a single-shot streak camera with single photo-electron counting capability performs the picosecond time-resolved spectroscopy of the collected photons. Depending on the acceptable level of photostress, the integration time can extend from 33ms up to several minutes with a real-time control of the jitter and time drifts. The meaning of the TRE spectro-temporal image is particularly detailed in the 450-480nm excitation window in regards to the contributions of mitochondrial flavoproteins. This optical system fulfills the reliability and the sensitivity, conditions required for measuring opto-electronic quantities from freely moving animal at low irradiation.

Notes

License CC-BY-NC-ND. --------- French law about open access and open science: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000033202746&categorieLien=id ----------------------- LOI n° 2016-1321 du 7 octobre 2016 pour une République numérique - Article 30.

Files

2004_mottin_22-.pdf

Files (7.5 MB)

Name Size Download all
md5:b39a351a67d83a062f3c6ca402a61a82
953.4 kB Preview Download
md5:ebc212c28ad61754f2b567e36ccb69cc
6.5 MB Download

Additional details

References

  • Delpy D. T., Cope M., Van der Zee P., Arridge S., Wray S. and Wyatt J., Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol., 33 (12), pp. 1433-1442, 1988.
  • Villringer A. and Chance B., Non-invasive optical spectroscopy and imaging of human brain function, Trends Neurosci., 20 pp. 435-442, 1997.
  • Liu H., Chance B., Hielscher A. H., Jacques S. L. and Tittel F. K., Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy, Med. Phys., 22 (8), pp. 1209-1217, 1995.
  • Firbank M., Okada E. and Delpy D. T., Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy, Phys. Med. Biol., 42 pp. 465-477, 1997.
  • Lohwasser R. and Soelkner G., Experimental and theoretical laser-Doppler frequency spectra of a tissue like model of a human head with capillaries, App. Opt., 38 (10), pp. 2129-2137, 1999.
  • van Veen R. L. P. and Sterenborg H. J. C. M., Correction for inhomogeneously distributed absorbers in spatially resolved diffuse reflectance spectroscopy, Proc. SPIE 4431, S. Andersson-Engels and M. F. Kaschke, pp. 192-194, 2001.
  • Steinbrink J., Wabnitz H., Obrig H., Villringer A. and Rinneberg H., Determining changes in NIR absorption using a layered model of the human head, Phys. Med. Biol., 46 (3), pp. 879-896, 2001.
  • Avrillier S., Tinet E., Tualle J. M., Prat J. and Ettori D., Propagation d impulsions ultracourtes dans les milieux diffusants. Application au diagnostic medical, Systèmes femtosecondes, Ed. P. Laporte, F. Salin and S. Mottin, Publications de l Université de Saint-Etienne, pp. 295-310, 2001. https://hal.archives-ouvertes.fr/INTEGRATIONS/page/systemes-femtosecondes
  • Alfano R. R. and Shapiro S. L., Emission in the region 4000 to 7000 angstrom via four-photon coupling in glass, Phys. Rev. Lett., 24 pp. 584-587, 1970.
  • Brodeur A. and Chin S. L., Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J. Opt. Soc. Am. B, 16 (4), pp. 637-650, 1999.
  • Pommeret S., van der Meulen P., Buntix G., Naskrecki R. and Mialock J.-C., Artefacts dans une expérience pompe-sonde, Systèmes femtosecondes, P. Laporte, F. Salin and S. Mottin, Publications de l université de Saint-Etienne, pp. 183-207, 2001. https://hal.archives-ouvertes.fr/INTEGRATIONS/page/systemes-femtosecondes
  • Birks T. A., Wadsworth W. J. and Russel P. S. J., Supercontinuum generation in tapered fibres, Opt. Lett., 25 (19), pp. 1415-1417, 2000.
  • Kieffer J.C. technologies de camera à balayage de fente femtoseconde, Systèmes femtosecondes, P. Laporte, F. Salin and S. Mottin, Publications de l université de Saint-Etienne, pp. 269-280, 2001. https://hal.archives-ouvertes.fr/INTEGRATIONS/page/systemes-femtosecondes
  • Andersson-Engels S., Berg R., Persson A. and Svanberg S., Multispectral tissue characterization with time-resolved detection of diffusely scatterd white light, Opt. Lett., 18 (20), pp. 1697-1699, 1993.
  • FOLESTAD, Staffan, JOSEFSON, Mats, SPARON, Anders, JOHANSSON, Jonas; 2001-03-29 ;WO0122063A1; ASTRAZENECA AB.
  • MOTTIN Stéphane, french patent under PCT; UJM CNRS.
  • Ishimaru A., Wave propagation and scattering in random media, NewYork, 1978
  • Kienle A. and Patterson M. S., Improved solutions of the steady state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium, J. Opt. Soc. Am. A, 14 pp. 246-254, 1997.
  • MOTTIN, S. TRAN-MINH, C., LAPORTE, P., CESPUGLIO R. and JOUVET M., Fiber optic time-resolved fluorescence sensor for in vitro serotonin determination, Applied Spectroscopy 47, pp. 590-597, 1993; DOI 10.1366/0003702934067180
  • MOTTIN, S., LAPORTE, P., CESPUGLIO R. and JOUVET M., Determination of NADH in the rat brain during sleep wake states with an optic fibre sensor and time resolved fluorescence procedures, Neuroscience, 79, pp. 683-693, 1997; DOI 10.1016/S0306-4522%2896%2900709-9
  • Helmchen F, Fee MS, Tank DW, Denk W., A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31, pp. 903-912 , 2001.
  • Yoder E. J., Kleinfeld D. Cortical Imaging Through the Intact Mouse Skull Using Two-Photon Excitation Laser Scanning Microscopy, MICROSCOPY RESEARCH AND TECHNIQUE 56, pp. 304–305, 2002.
  • Mottin S, Laporte P, Cespuglio R. Inhibition of NADH oxidation by chloramphenicol in the freely moving rat measured by picosecond time-resolved emission spectroscopy. J. Neurochem. 84 (4), pp. 633-642, 2003.
  • Paxinos G. and Watson C., The rat Brain in stereotaxic coordinates Third Edition, 1997.
  • Watanabe M., Koishi M., Fujiwara M., Takeshita T. and Cieslik W., Development of a new fluorescence decay measurement system using two-dimensional single-photon counting, J. Photochem. Photobiol. A: Chem, 80 pp. 429-432, 1994.
  • Bevilacqua F. (1998). Local optical characterization of biological tissues in vitro and in vivo. Thesis n°1781, Ecole Polytechnique Fédérale de Lausanne.
  • Tualle, J.M., Tinet, E., Avrillier, S. Mesure des coefficients optiques dans des milieux diffusants stratifiés, Signaux et milieux complexes, Publications de l Université de Saint-Etienne, pp. 89-99, 2002.
  • Billinton N. and Knight. A. W., Seeing the Wood Through the Trees: A Review of Techniques for Distinguishing Green Fluorescent Protein from Endogenous Autofluorescence. Analytical Biochemistry. 291, pp. 175-197, 2001.
  • Villringer, A. and Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, pp. 435-442, 1997.
  • Chang J., Graber, H., Barbour R. Luminescence optical tomography of dense scattering media, JOSA A, 14,1, pp. 288-297, 1997.
  • Mayevsky A. Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Research 113, pp. 327-338, 1976.
  • Chance B, Schoener B, Oshino R, Itshak F and Nakase Y. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J.Biol.Chem. 254, pp. 4764-4771, 1979.
  • Chung YO, Schwartz JA, Gardner CM, Sawaya RE and Jacques SL. Diagnostic potential of laser-induced autofluorescence emission in brain tissue. J Korean Med Sci. 12, pp. 135-142, 1997.
  • Scholtz R, Thurman RG, Williamson JR, Chance B and Bücher Th. J.Biol.Chem. 244, pp. 2317-2324, 1969.
  • Kunz WS and Kunz W. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim.Biophys.Acta 841, pp. 237-246, 1985.
  • Kunz WS and Gellerich FN. Quantification of the content of fluorescent flavoproteins in mitochondria from liver, kidney cortex, skeletal muscle, and brain. Biochem Med Metab Biol. 50, pp. 103-110, 1993.
  • Barlow CH, Harden WR, Harken AH, Simson MB, Haselgrove JC, Chance B, O Connor M and Austin G. Fluorescence mapping of mitochrondrial redox changes in heart and brain. Crit Care Med. 7, pp. 402-406, 1979.
  • Wolfbeis, O. S.and Schulman, S. G. The fluorescence of organic natural products in Molecular Luminescence Spectroscopy, method and applications: Part 1; New-York; Wiley J. & sons, 77, pp. 167-370, 1985.
  • Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett. 28, pp. 1022-4, 2003.