Published September 7, 2020 | Version v1
Taxonomic treatment Open

Chiroderma trinitatum Goodwin 1958

  • 1. Pós-graduação, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270 - 901, Belo Horizonte, Minas Gerais, Brazil
  • 2. Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M 5 S 2 C 6, Canada
  • 3. Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, CCEN / DSE, Universidade Federal da Paraíba, Campus I, 58059 - 900 João Pessoa, Paraíba, Brazil

Description

Chiroderma trinitatum Goodwin, 1958

Synonyms:

Chiroderma trinitatus Goodwin, 1958:1; type locality “ Cumaca, Trinidad, British West Indies. ”

Chiroderma trinitatum: Handley, 1960:466; correct gender concordance.

Chiroderma trinitatum trinitatum: Barriga-Bonilla, 1965: 247; name combination.

Chiroderma trinitratum Linares and Moreno-Mosquera, 2010: 275; incorrect subsequent spelling of Chiroderma trinitatum Goodwin, 1958.

Type Material. The holotype, designated in the original publication, is specimen AMNH 175325, a female pregnant when collected in a well-lit cave, by L. Venus and B. Smith on March 22, 1956, in Cumaca, Trinidad and Tobago. The skin is preserved in fluid and nearly all hair has fallen out. There is a transversal cut on the abdomen. The skull has been removed and is in good condition, with all the teeth and cranial bones preserved. The fetus, removed from the type, has a distinct median dorsal stripe and a crown-rump length of approximately 20 mm.

Distribution and Habitat. Specimens are known form Guyana; Suriname; French Guiana; Trinidad; northern, central and western Brazil; northern and eastern Bolivia; eastern Perú; eastern Ecuador; southern and eastern Colombia; and southern Venezuela (Fig. 23).

Records are from humid tropical forests, in the Amazon basin, Orinoco basin, and the Guianas. Some records are from ecotonal areas between humid forests and drier, more seasonal formations, such as in Serra do Roncador (central Brazil), and in San Ramón (northeastern Bolivia). C. trinitatum have been collected from approximately 20 m above sea level (e.g. Belém, Brazil) to elevations near 1,050 m, in the Andean foothills (e.g. Santa Bibiana, Perú), corroborating the altitudinal amplitude given in the literature (e.g. Handley 1976; Ascorra et al. 1996; Solari et al. 2006, 2019).

Description and Comparisons. Dorsal pelage may be pale brown, dark brown, or grayish brown (Fig. 24). A completely white C. trinitatum was recorded in the Peruvian Amazon by Tello et al. (2014). Dorsal hairs are tricolored, the base about ¼ of the hair length and dark brown, middle portion about ½ of the hair length and pale buff or pale gray, and tips about ¼ of the hair length and pale brown, dark brown, or grayish brown. Facial stripes are always present with the interocular pair wider (> 2 mm) than the genal stripes. A median dorsal stripe was present in 111 of the 113 specimens examined (98%). When present, the stripe was barely visible in 13 of 95 specimens (13%). The stripe usually begins in the interscapular region and reaches the posterior rump of the body. In some specimens, the dorsal stripe began more anteriorly in the region immediately behind the nape. The ears have yellowish margins and base, with the remainder brownish. The spear of the noseleaf has a simple tip, is brown in color, with paler lateral borders of the horseshoe.

The skull is similar to that of C. gorgasi and it is smaller than every other species of Chiroderma (Tables 7 and 8). The braincase is globose, standing above the frontonasal region in lateral view. A sagittal crest was absent in 37 of 126 specimens (29.4%), weakly developed in 86 (68.2%), and well developed in 3 (2.3%). The nasal notch is relatively short, not reaching the interorbital region (Fig. 25). C. trinitatum has relatively small orbits; the anterior border approximating the mesial margin of M1 (Fig. 26). Post orbital processes are present, but rhomboid instead of pointed as in the other species.

A posterior palatine process was absent in 110 (90.9%) of the 121 specimens examined. A small process was present in 10 specimens, and one (AMNH 264076) had an anomalous notch in place of a projection on the margin of the palate. Paraoccipital processes are absent. When cranium and mandible are in occlusion, there is a lateral gap bordered by the C, P3, P4, p2 and p4 (Fig. 9).

The I1s have converging tips in most of the specimens (112 out of 122) we examined. The I1s may be in contact at the base, along approximately ⅔ of their length, or only at their tips, the most frequent state. In some C. trinitatum, the I1s are separated throughout their length. The P3 is wider (buccolingually) than long (mesiodistally) and does not touch P4.

The crown of the lower canine is relatively short, clearly below the level of the tip of the coronoid, in lateral view (Fig. 26). The p2 is large, approximately ¾ of the height of p4, and higher than long. The p2 may be close to or in contact with the canine, or it may lie approximately equidistant between c and p4 (Fig. 26).

Chiroderma trinitatum is easily differentiated from C. doriae and C. improvisum by its much smaller size (Tables 7 and 8). The intermediate-sized species, e.g. C. salvini, C. scopaeum, and C. villosum, are distinguishable from C. trinitatum by having their longer nasal notch that reaches the interorbital region, pointed post-orbital processes and the short p2, which is approximately ¼ the crown height of p4.

The species most similar to C. trinitatum is C. gorgasi. C. trinitatum has relatively shorter lower canines, the tips of which are clearly below the level of the top of the coronoid process in lateral view. The lower canines have higher crowns in C. gorgasi, being on the same level or higher than the tip of the coronoid process (Fig. 26). The base of lower canines of C. trinitatum is also longer, but shorter in C. gorgasi. The p2 of C. trinitatum is usually higher than long mesiodistally; whereas, in C. gorgasi the p2 is longer than high (Fig. 27). As recently described by Lim et al. (2020), C. trinitatum tends to have a wider braincase and typically has a third cuspid on p4 that is absent in C. gorgasi.

Geographic Variation and Phylogeography. Phylogenetic analyses of 68 sequences of C. trinitatum resulted in two highly-supported clades (Fig. 21). One of the clades is based on sequences from 26 specimens from the Guianas (French Guiana, Guyana, and Suriname), and the island of Trinidad. The other clade consists of 42 specimens, from the Guianas (Guyana and Suriname) and the Amazon basin (Bolivia, Brazil, Ecuador, and Perú) (Fig. 21). However, we could not find any morphological differences between the two clades.

Subspecies. C. trinitatum is monotypic.

Natural History. C. trinitatum is frugivorous and is known to consume fruits and infructescences of at least five species: Cecropia obtusifolia, Piper elongatum, Solanum riparium (Solanaceae), Ficus sp., and Vismia sp. (Hypericaceae) (Reis & Peracchi 1987; Loayza et al. 2006; Linares & Moreno-Mosquera 2010). C. trinitatum has also been recorded drinking the mineral-rich water at clay licks (“collpas”) in the Peruvian Amazon (Bravo et al. 2008, 2010; Ghanem et al. 2013; Ghanem & Voigt 2014).

In most studies comparing the relative abundance of species in the canopy and understory, C. trinitatum was more commonly netted in the higher forest strata, at approximately 20 m, suggesting that the species is a canopy frugivore (Ascorra et al. 1996; Simmons & Voss 1998; Charles-Dominique & Cockle 2001; Kalko & Handley Jr. 2001; Delaval et al. 2005; Rex et al. 2011). Day roosts of C. trinitatum are unknown, and the only information available comes from the type specimen, which was collected on the island of Trinidad in a cave described by Goodwin & Greenhall (1961) as well-lit and co-inhabited by Micronycteris megalotis.

In Venezuela, two species of ectoparasites were documented on C. trinitatum, the mite Periglischurus iheringi (Spinturnicidae) and a species of Streblidae of the genus Paratrichobius (salvini complex) (Herrin & Tipton 1975; Wenzel 1976). In Colombia, the tick Ornithodoros azteci (Argasidae) was recorded from C. trinitatum by Marinkelle & Grose (1981). The endoparasite Hasstilesia tricolor (Nematoda) was recorded by Nogueira et al. (2014) in C. trinitatum from Acre, Brazil.

Reproductive data suggest seasonal polyestry. Pregnant females are recorded from December through March in the Amazon of Colombia, Perú, and Venezuela, and on the island of Trinidad. Pregnancies are recorded from June through September in Guyana and the Amazon of Brazil, Perú, and Venezuela. Lactating females were documented in February, April, May, and July. Apparently, gestation peaks during the rainy season (December to March), with one birth peak from the middle to the end of the rainy season, and a second during the dry season (June to September) with births occurring close to the beginning of the rainy season.

Specimens Examined (N = 146): Bolivia: Beni, Estancia Yutiole (AMNH 210810), Remansos (AMNH 209520, 209521); La Paz, Río Coraico Valley (AMNH 246646), Santa Ana de Madidi (AMNH 261632, 261641);

Santa Cruz, 10 km N San Ramón (AMNH 261674), Parque Nacional Noel Kempff Mercado, 23 km S Campamento Los Fierros (AMNH 264077), Parque Nacional Noel Kempff Mercado, 27.5 km S Campamento Los Fierros (AMNH 264076), Parque Nacional Noel Kempff Mercado, 3 km S Campamento Los Fierros (AMNH 264075), Parque Nacional Noel Kempff Mercado, El Refugio (USNM 584492). Brazil: Acre, Parque Nacional da Serra do Divisor (ALP 7020, 7088, 7099, 7124, 7134, 7143, 7144, 7195, 7295, 7311); Amazonas, Comunidade Cachoeirinha (LMSUP [ICA033]), opposite to Comunidade São Pedro (LMUSP [ICA173]); Mato Grosso, 264 km N Xavantina (USNM 393704–393711), Parque Nacional do Juruena, Serra dos Apiacás (CMUFLA 1284), São José do Rio Claro (MZUSP [PEV 896–897]); Pará, Fazenda Bocaina (UFMG [VCT1437]), Fazenda Fartura (MZUSP 36012, 36013), Floresta Nacional de Carajás (UFMG [VCT6342]), rio Xingu, Linha de Transmissão Jurupari (MZUSP 35033), Sta. A, IAN (USNM 361723, 460127), Várzea, Belém (USNM 460124, 460125, 460126); Rondônia, Monte Negro (MZUSP 35026, ZUFMS 1342). Colombia: Amazonas, Puerto Nariño (USNM 483766–483769); Vichada, Territorio Faunistico Tuparro (IAvH-M 2083). Guyana: Cuyuni-Mazaruni, Maz 3 (BMNH 1980.751, 1980.752). Namai Creek (ROM 108144); Potaro-Siparuni, Iwokrama Reserve (ROM 109026); Upper Demerara-Berbice, 3.2 km W Kurupukari (BMNH 1997.39), Tropenbos (ROM 103486). French Guiana: Sinnamary, Paracou (AMNH 266255, 266256, 267189, 268532, 269118). Perú: Amazonas, Cordillera del Condor (USNM 581934); Cusco, Camisea, Armihuari (MUSM 13619, 13622, 13623, USNM 582837), Camisea, Pagoreni (MUSM 13624–13626, USNM 582838), Consuelo (MUSM 19670); Huánuco, Puerto Inca (MUSM 36692); Junín, Santa Bibiana (MUSM 40606); Loreto, Jenaro Herrera (MUSM 4219, 5594), km 22,7 da rodovia Iquitos-Nauta (MUSM 29559), Peña Negra (MUSM 29557), Quebrada Grande (MUSM 21134, 21135), Río Lagartococha (MUSM 21138); Madre de Dios, Albergue Maskoitania (MUSM 19669), Pakitza (MUSM 678), Quebrada Aguas Calientes (MUSM 16651), Refugio Juliaca (MUSM 11662); Pasco, Campamento Río Lobo (MUSM 10229), Cerro Chontiya (MUSM 10226, 10227), Cerro Jonatán (MUSM 10228), San Pablo (AMNH 230656), Yanahuanca (MUSM 10881); Puno, Curva Alegre (MUSM 26658), San Fermín (MUSM 26659); Ucayali, Concesión de Conservación Río La Novia (MUSM 44185); Suriname: Brokopondo, Brownsberg Nature Park (ROM 114213); Sipaliwini, Kushere Landing (ROM 120168). Trinidad and Tobago: Trinidad, Arima (AMNH 205373), Cumaca (AMNH 175325 [holotype of trinitatum]), Fillete (AMNH 205375), Las Cuevas (BMNH 1971.121). Venezuela: Amazonas, Boca Mavaca (USNM 405159), Capibara (USNM 415245), Cerro Neblina base camp (USNM 560764–560766), Guayabal (USNM 415256, 415257), Río Cunucunuma (MZUSP 27166, 27167, USNM 405132–405139, 405141–405148, 405156, 405157), Río Manapiare (USNM 415250–415254); Apure, La Blanquita (USNM 440348); Barinas, Altamira (USNM 418121); Bolívar, 85 km SSE El Dorado (USNM 387192), El Manaco (USNM 387193–387198, 387202, 387203); Yaracuy, Minas de Aroa (USNM 440747).

Notes

Published as part of Garbino, Guilherme S. T., Lim, Burton K. & Tavares, Valéria Da C., 2020, Systematics of big-eyed bats, genus Chiroderma Peters, 1860 (Chiroptera: Phyllostomidae), pp. 1-93 in Zootaxa 4846 (1) on pages 40-44, DOI: 10.11646/zootaxa.4846.1.1, http://zenodo.org/record/4017497

Files

Files (13.1 kB)

Name Size Download all
md5:1a28fd344bca29b5ff5319ef36a1ed3a
13.1 kB Download

System files (123.6 kB)

Name Size Download all
md5:744ecf41758bd0b67dc7c00e9b3cd923
123.6 kB Download

Linked records

Additional details

Biodiversity

Collection code
AMNH , AMNH, BMNH , BMNH, ROM , LMSUP , LMUSP , MZUSP , ROM , UFMG
Family
Phyllostomidae
Genus
Chiroderma
Kingdom
Animalia
Material sample ID
120168 , 230656 , 261632, 261641 , ALP 7020, 7088, 7099, 7124, 7134, 7143, 7144, 7195, 7295, 7311 , AMNH 175325 , AMNH 205373 , AMNH 205375 , AMNH 209520, 209521 , AMNH 210810 , AMNH 246646 , AMNH 261674 , AMNH 264075 , AMNH 264076 , AMNH 264077 , AMNH 266255, 266256, 267189, 268532, 269118 , BMNH 1971.121 , BMNH 1980.751, 1980.752 , BMNH 1997.39 , CMUFLA 1284 , IAvH-M 2083 , ICA033 , ICA173 , MUSM 10226, 10227 , MUSM 10228 , MUSM 10229 , MUSM 10881 , MUSM 11662 , MUSM 13619, 13622, 13623, USNM 582837 , MUSM 13624-13626, USNM 582838 , MUSM 16651 , MUSM 19669 , MUSM 19670 , MUSM 21134, 21135 , MUSM 21138 , MUSM 26658 , MUSM 26659 , MUSM 29557 , MUSM 29559 , MUSM 36692 , MUSM 40606 , MUSM 4219, 5594 , MUSM 44185 , MUSM 678 , MZUSP 27166, 27167, USNM 405132-405139, 405141-405148, 405156, 405157 , MZUSP 35026, ZUFMS 1342 , MZUSP 35033 , MZUSP 36012, 36013 , PEV 896-897 , ROM 103486 , ROM 108144 , ROM 114213 , USNM 361723, 460127 , USNM 387192 , USNM 387193-387198, 387202, 387203 , USNM 393704-393711 , USNM 405159 , USNM 415245 , USNM 415250-415254 , USNM 415256, 415257 , USNM 418121 , USNM 440348 , USNM 440747 , USNM 460124, 460125, 460126 , USNM 483766-483769 , USNM 560764-560766 , USNM 581934 , USNM 584492 , VCT1437 , VCT6342
Order
Chiroptera
Phylum
Chordata
Scientific name authorship
Goodwin
Species
trinitatum
Taxon rank
species
Type status
holotype
Taxonomic concept label
Chiroderma trinitatum Goodwin, 1958 sec. Garbino, Lim & Tavares, 2020

References

  • Goodwin, G. G. (1958) Three new bats from Trinidad. American Museum Novitates, 1877, 1 - 6.
  • Handley Jr., C. O. (1960) Descriptions of new bats from Panama. Proceedings of the United States National Museum, 112, 459 - 479. https: // doi. org / 10.5479 / si. 00963801.112 - 3442.459
  • Barriga-Bonilla, E. (1965) Estudios mastozoologicos colombianos, I: Chiroptera. Caldasia, 9 (43), 241 - 268.
  • Linares, E. L. & Moreno-Mosquera, E. A. (2010) Morfologia de los frutiolos de Cecropia (Cecropiaceae) del Pacifico colombiano y su valor taxonomico en el estudio de dietas de murcielagos. Caldasia, 32 (2), 275 - 287.
  • Handley Jr., C. O. (1976) Mammals of the Smithsonian Venezuelan Project. Brigham Young University Science Bulletin, Biological Series, 20 (5), 1 - 89. https: // doi. org / 10.5962 / bhl. part. 5667
  • Ascorra, C. F., Solari, S. & Wilson, D. E. (1996) Diversidad y Ecologia de los Quiropteros en Pakitza. In: Wilson, D. E. & Sandoval, A. (Eds.), Manu. The biodiversity of Southeastern Peru. Editorial Horizonte, Lima, pp. 593 - 612.
  • Solari, S., Pacheco, V., Luna, L., Velazco, P. M. & Patterson, B. D. (2006) Mammals of the Manu Biosphere Reserve. Fieldiana Zoology, New Series, 110, 13 - 22. https: // doi. org / 10.3158 / 0015 - 0754 (2006) 110 [13: MOTMBR] 2.0. CO; 2
  • Solari, S., Medellin, R., Rodriguez-Herrera, B., Tavares, V. da C., Garbino, G. S. T., Camacho, M. A., Tirira, D., Lim, B. K., Arroyo-Cabrales, J., Rodriguez-Duran, A., Dumont, E., Burneo, S., Aguirre, L. F., Tschapka, M. & Espinosa, D. (2019) Family Phyllostomidae (New World leaf-nosed bats). In: Wilson, D. E. & Mittermeier, R. A. (Eds.), Handbook of the Mammals of the World, Bats. Vol. 9. Lynx Edicions, Barcelona, pp. 444 - 583.
  • Tello, C., Streicker, D. G., Gomez, J. & Velazco, P. M. (2014) New records of pigmentation disorders in molossid and phyllostomid (Chiroptera) bats from Peru. Mammalia, 78 (2), 191 - 197. https: // doi. org / 10.1515 / mammalia- 2013 - 0019
  • Lim, B. K., Loureiro, L. O. & Garbino, G. S. T. (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera: Phyllostomidae). ZooKeys, 918, 41 - 63. https: // doi. org / 10.3897 / zookeys. 918.48786
  • Reis, N. R. & Peracchi, A. L. (1987) Quiropteros da regiao de Manaus, Amazonas, Brasil (Mammalia, Chiroptera). Boletim do Museu Paraense Emilio Goeldi, Serie Zoologia, 3 (2), 1 - 21.
  • Loayza, A. P., Rios R. S. & Larrea-Alcazar, D. M. (2006). Disponibilidad de recurso y dieta de murcielagos frugivoros en la Estacion Biologica Tunquini, Bolivia. Ecologia en Bolivia, 41 (1), 7 - 23.
  • Bravo, A., Harms, K. E., Stevens, R. D. & Emmons, L. H. (2008) Collpas: Activity hotspots for frugivorous bats (Phyllostomidae) in the Peruvian Amazon. Biotropica, 40 (2), 203 - 210. https: // doi. org / 10.1111 / j. 1744 - 7429.2007.00362. x
  • Bravo, A., Harms, K. E. & Emmons, L. H. (2010) Puddles created by geophagous mammals are potential mineral sources for frugivorous bats (Stenodermatinae) in the Peruvian Amazon. Journal of Tropical Ecology, 26 (2), 173 - 184. https: // doi. org / 10.1017 / S 0266467409990472
  • Ghanem, S. J., Ruppert, H., Kunz, T. H. & Voigt, C. C. (2013) Frugivorous bats drink nutrient-and clay-enriched water in the Amazon rain forest: Support for a dual function of mineral-lick visits. J ournal of Tropical Ecology, 29 (1), 1 - 10. https: // doi. org / 10.1017 / S 0266467412000740
  • Ghanem, S. J. & Voigt, C. C. (2014) Defaunation of tropical forests reduces habitat quality for seed-dispersing bats in Western Amazonia: An unexpected connection via mineral licks. Animal Conservation, 17 (1), 44 - 51. https: // doi. org / 10.1111 / acv. 12055
  • Simmons, N. B. & Voss, R. S. (1998) The Mammals of Paracou, French Guiana: a neotropical lowland rainforest fauna Part 1. Bats. Bulletin of the American Museum of Natural Histor y, 237, 1 - 219.
  • Charles-Dominique, P. & Cockle, A. (2001) Frugivory and seed dispersal by bats. In: Bongers, F., Charles-Dominique, P., Forget, P. - M. & Thery, M. (Eds.), Nouragues: dynamics and plant-animal interactions in a Neotropical rainforest. Springer, Dordrecht, pp. 207 - 215.
  • Delaval, M., Henry, M. & Charles-Dominique, P. (2005) Interspecific competition and niche partitioning: example of a Neo- tropical rainforest bat community. Revue d'Ecologie, Terre Vie, 60, 149 - 166.
  • Rex, K., Michener, R., Kunz, T. H. & Voigt, C. C. (2011) Vertical stratification of Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae) revealed by stable carbon isotopes. Journal of Tropical Ecology, 27 (3), 211 - 222. https: // doi. org / 10.1017 / S 0266467411000022
  • Goodwin, G. G. & Greenhall, A. M. (1961) A review of the bats of Trinidad and Tobago. Bulletin of the American Museum of Natural History, 122, 187 - 301.
  • Herrin, C. S. & Tipton, V. J. (1975) Spinturnicid mites of Venezuela (Acarina: Spinturnicidae). Brigham Young University Science Bulletin, Biological Series, 20 (2), 1 - 72.
  • Wenzel, R. L. (1976) The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin, Biological Series, 20, 1 - 177.
  • Marinkelle, C. J. & Grose, E. S. (1981) A list of ectoparasites of Colombian bats. Revista de Biologia Tropical, 29 (1), 11 - 20.