Published December 12, 2020 | Version v1
Dataset Open

A unifying framework for mean-field theories of asymmetric kinetic Ising systems [Dataset]

  • 1. University of Sussex

Description

Datasets for reproducing the results in the article Aguilera, M., Moosavi, S.A. & Shimazaki, H. A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nature Communications 12, 1197 (2021). https://doi.org/10.1038/s41467-021-20890-5. Results can be reproduced using the code repository of the article https://github.com/MiguelAguilera/kinetic-Plefka-expansions

The main dataset contains simulations of an asymmetric, kinetic Sherrington-Kirkpatrick (SK) model around the equivalent of a ferromagnetic phase transition in the equilibrium SK model. External fields \(H_i\) are sampled from independent uniform distributions \(\mathcal{U}(-\beta H_0, \beta H_0)\) with \(H_0=0.5\), whereas coupling terms \(J_{ij}\) are sampled from independent Gaussian distributions \(\mathcal{N}(\beta \frac{J_0}{N},\beta^2 \frac{J_\sigma^2}{N})\), with \(J_0=1, J_\sigma = 0.1\) where \(\beta\) is a scaling parameter (i.e., an inverse temperature).

To study the non-stationary transient dynamics of the model, we start from \(\mathbf s_0 = \mathbf 1\) (all elements set to 1 at \(t=0\)) and recursively update its state for \(T=128\) steps. We repeated this stochastic simulation for \(10^6\) trials for 21 values of \(\beta\) in the range \([0.7\beta_c, 1.3\beta_c]\), except for the reconstruction of the phase transition where we used \(R=10^5\) and 201 values of \(\beta\) in the same range.

Each file is stored in: 'data-H0-0.5-J0-1.0-Js-0.1-N-512-R-1000000-beta-[beta_ref].npz', where [beta_ref] contains the normalized value of \(\beta/\beta_C\) between 0.7 and 1.3.

Furthermore, data in the folders 'forward.zip', 'inverse.zip' and 'reconstruction.zip' contain files to reproduce the results of the paper above. These files show the results of solving the forward Ising problem, the inverse Ising problem, and the reconstruction of the phase transition combining forward and inverse problems.

Files

forward.zip

Files (16.7 GB)

Name Size Download all
md5:905d8c66df8a0fb617da08da076f4915
482.8 MB Download
md5:266d441fbaa03a3c60dba2c4462594cd
483.2 MB Download
md5:24bc21878dbecd22b0626f436ddf409d
483.7 MB Download
md5:3b53d5a776de3c8377ede41ddee87385
484.0 MB Download
md5:4ceac169f72297157af9ce41adc4c45a
484.6 MB Download
md5:55cd23cfef97967833925a0673b6b2d1
485.8 MB Download
md5:8aef3ccc3caa29e7fcef479c5770c8f9
487.5 MB Download
md5:bfeae6a3af8d22f7ec5d77d7691ccf86
489.8 MB Download
md5:fd6df35441fbd700c1d12a2fa6242c6c
492.1 MB Download
md5:c5de8e4376cc99f2d4b188e1aeaee3e8
494.7 MB Download
md5:2f61a29f51e2aa6d74541483166438cf
494.7 MB Download
md5:e76602c27ebd13ae803d9c41e8b96dcf
490.1 MB Download
md5:6895599c392b66ee74af2998e594a87b
480.6 MB Download
md5:f87fced007ca413639c99302132ddc80
469.7 MB Download
md5:4c3cd61561637fe332a579f1d1419f2f
461.5 MB Download
md5:18787dd81b0970221639d2cfb0b592d5
455.2 MB Download
md5:a86aaaeeff6a7ca5d05eaf391d4a04ba
450.4 MB Download
md5:c53bc6338977be2b066a7558b3242387
446.6 MB Download
md5:5ba41c85f4f18df93fa0f6e8ca5c8eed
443.6 MB Download
md5:90de9c3b54364032aceb5c774e791cb6
441.0 MB Download
md5:cced713fdc33d6b12b95059c1fe176b5
438.8 MB Download
md5:3af47cb98aabfe877966b46888e61282
410.0 MB Preview Download
md5:86d8eb790b9f14f125d431c290292f2e
211.0 MB Preview Download
md5:8cb4303ebfd1c69d9433365190b7fead
2.0 MB Download
md5:577bfba74d25e67483215fda3b3ab032
6.1 GB Preview Download

Additional details

Funding

MSCA 2018 – Marie Skłodowska-Curie Actions - Beyond 2020 811208
European Commission

References