Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published December 11, 2020 | Version v1.1
Software Open

Anomalous diffusion classification - three sets of features for the feature-based machine learning approach

  • 1. Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology

Contributors

Related person:

  • 1. Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology

Description

The anomalous diffusion classification classifiers used in: H. Loch-Olszewska and J. Szwabiński "Impact of feature choice on machine learning classification of fractional anomalous diffusion". Manuscript in preparation.

Files

HannaLochOlszewska/FAD_classification-v1.1.zip

Files (22.6 kB)

Name Size Download all
md5:2e85e09e380dc84ebaae054a82b48a99
22.6 kB Preview Download

Additional details

References

  • Kowalek, P.; Loch-Olszewska, H.; Szwabiński, J. Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach. Phys. Rev. E 2019, 100, 032410. doi:10.1103/PhysRevE.100.032410.
  • Janczura, J.; Kowalek, P.; Loch-Olszewska, H.; Szwabiński, J.;Weron, A. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion. Phys. Rev. E 2020, 102, 032402. doi:10.1103/PhysRevE.102.032402.
  • Wagner, T.; Kroll, A.; Haramagatti, C.R.; Lipinski, H.G.; Wiemann, M. Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments. PLoS ONE 2017, 12(1), e0170165. doi:10.1371/journal.pone.0170165.