Published April 18, 2022 | Version v1
Dataset Open

Data for: Molecular mechanisms behind safranal's toxicity to liver cancer cells from dual omics

Creators

  • 1. NEW YORK UNIVERSITY ABU DHABI

Description

The spice saffron (Crocus sativus) has anticancer activity in several human tissues, but the molecular mechanisms underlying potential therapeutic effects are poorly understood. We investigated the impact of safranal, a small molecule secondary metabolite from saffron, on the HCC cell line HEP-G2 using untargeted metabolomics (HPLC-MS) and transcriptomics (RNAseq). Increases in glutathione disulfide and other biomarkers for oxidative damage contrasted with lower levels of the antioxidants biliverdin IX (139-fold decrease, p=5.3E-5), the ubiquinol precursor 3-4-dihydroxy-5-all-trans-decaprenylbenzoate (3-fold decrease, p=1.9E-5), and resolvin E1 (-3,282-fold decrease, p=4E-5), which indicates sensitization to reactive oxygen species. We observed a significant increase in intracellular hypoxanthine (538-fold increase, p=7.7E-6) that may be primarily responsible for oxidative damage in HCC after safranal treatment. The accumulation of free fatty acids and other biomarkers, such as S-methyl-5'-thioadenosine, are consistent with safranal-induced mitochondrial de-uncoupling and explain the sharp increase in hypoxanthine we observed. Overall, the dual omics datasets describe routes to widespread protein destabilization and DNA damage from safranal-induced oxidative stress in HCC cells.

Files

Data_S2-metabolomics-pellet-and-mediaXCMS.zip

Files (360.1 MB)

Name Size Download all
md5:4e85dedc596f947bb902517957254ad6
127.7 MB Download
md5:3945365ac3b2da1af5de75f3d74185be
232.4 MB Preview Download