Published November 20, 2020 | Version 1.0
Dataset Open

Harnessing the power of digitized natural history collections to visualize spatiotemporal patterns in native and non-native bee flight phenology

  • 1. University of California, Santa Barbara

Description

What time of year are bees flying, where are they flying, and how do biogeographical factors, sex, and native status affect flight phenology? Consistent monitoring along with creating spatially and temporally explicit visualizations using large openly available data sets enhance our understanding of trends in flight time phenology and shape our understanding of bee-plant interactions, including shifts in the phenology of bee pollinators.

Species occurrence data from digitized collection networks (iNaturalist, Global Biodiversity Information Faculty (GBIF), Integrated Digitized Biocollections (iDigBio), Symbiota Collections of Arthropods Network (SCAN), and UC Santa Barbara Collection Network) are part of an effort to improve our understanding of bees in coastal Santa Barbara County, including the California Channel Islands. New inventory collections combined with historical data from over 11 natural history museums and 2 observation networks are used in an effort to examine patterns and changes in phenology of native and non-native bee species, and create updated species inventories.

Synthesizing species observation data from digitized natural history collections makes use of a wealth of existing data and multiplies the analytical power of isolated observations, but it is not without limitations and challenges. By exploring novel techniques to generate clear and accurate visualizations to communicate bee flight time, we present our key initial findings and identify geographic, temporal, and taxonomic gaps, which will lead to further focused inventory projects of coastal Santa Barbara County, improved data quality for phenological analyses, and reusable methods for visualizing insect phenology data across taxa or geography.

The attached files include the R code and some of the .csv files used to produce the figures in my poster that was available on demand at the Entomology Society of America 2020 virtual meeting.  

Files

Augochlorella pomoniella_combined_SCAN.csv

Files (1.3 MB)

Name Size Download all
md5:69a6658b3e5d1b9a6cfc9ddeb2b912e9
428.7 kB Preview Download
md5:e269084722b85cb78035d13a4dffb2b4
16.5 kB Download
md5:d5376b0dab8bf93007816563a5a3a3e8
47.2 kB Preview Download
md5:af218ee0ada9ea0341ec53d3f87eef7d
13.1 kB Preview Download
md5:4b17bc42a79b5b18bbf36c46bc815066
264.6 kB Preview Download
md5:b1e4e998a569e16945540219df270cf8
512.9 kB Preview Download
md5:a2f2a19e37b5e30f8aeb1328057ca454
35.8 kB Preview Download