Published November 11, 2020 | Version v1.0.0
Dataset Open

SCYM Maize Yield Maps (Low Resolution) from Deines et al. 2021, Lobell et al. 2020

  • 1. SELECT

Contributors

Contact person:

Research group:

  • 1. Stanford University

Description

Annual maize yield maps for the US Corn Belt for 1999-2018, aggregated to 10 km resolution. Yield maps are produced with the SCYM methodology at 30 m resolution using Landsat satellite data. The original high resolution yield maps are aggregated to a 10 km grid resolution to preserve privacy.

Dataset creation is described in Deines et al., 2020 in Remote Sensing of Environment (open access). The 2008-2018 map dataset described therein was extended back to 1999 for Lobell et al. 2020 in Nature Food (read-only accessible version). Maps for 2008-2018 use the USDA's Cropland Data Layers to identify maize pixels; maps for 1999-2007 use the Corn-Soy Data Layer produced by Wang et al. 2000 (data + manuscript are open access).

Metadata

Yield values are provided in metric tons/hectare. 

No Data value = -999 (grid cells outside of the study area + cells with <1% coverage of SCYM 30 m yield maps)

Map projection: EPSG:5070, CONUS Albers Equal Area

 

 

Preferred citation(s):

Deines, J.M., R. Patel, S. Lang, W. Dado, & D.B. Lobell. 2020. A million kernels of truth: Insights in to scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2020.112174

D.B. Lobell, J.M. Deines, & S. Di Tomasso. 2020. Changes in the drought sensitivity of U.S. maize yields. Nature Food 1:729-735. https://doi.org/10.1038/s43016-020-00165-w

 

Files

1999_scym2020_20201107_10000m.tif

Files (613.9 kB)

Name Size Download all
md5:365eb6a880f4d6846d3d036ca2241892
30.5 kB Preview Download
md5:056f43ab0d2d41cfedec5a506175c52c
29.6 kB Preview Download
md5:2b10f4f6ebca8f658857cba001fe4311
29.5 kB Preview Download
md5:02a394ee90271d39cbb14fcb7e80f3d1
29.6 kB Preview Download
md5:81513022ce7912166c64aa8fd1570651
29.5 kB Preview Download
md5:dbf6da65c83f56710c241e476f43e718
29.2 kB Preview Download
md5:6d62fe7110fd58b6292a885f8c55f703
30.3 kB Preview Download
md5:fc7ca20d5cbac2524302995556f0d4fd
29.2 kB Preview Download
md5:a5ce1fa51352c7ee8b386f55a9237183
29.9 kB Preview Download
md5:452018cce8871962c89916d713dc4ac6
29.9 kB Preview Download
md5:dccb870753c64c290b1ca8e6f12a77be
29.5 kB Preview Download
md5:5a100de55ec219a18dd983d197903a83
31.1 kB Preview Download
md5:34cd2d3cffc20d276035d1251d3ac5f3
31.6 kB Preview Download
md5:4794f927974af1f2aed9d1387e3b2544
32.4 kB Preview Download
md5:5162a55cd5148a021bca1f49b7dddf17
32.7 kB Preview Download
md5:a2f847e81143b9293dc0cdaaf1f8d4c7
31.2 kB Preview Download
md5:f5ea6da2a4b45057d93efb89b055825f
31.7 kB Preview Download
md5:569db9e5c0651212bd823f740d9bedda
32.2 kB Preview Download
md5:7417d5a2122c2b4e3236ae839d06eabb
32.2 kB Preview Download
md5:da6f551032dc25702fd15d6b19a6f3b4
32.1 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 10.1038/s43016-020-00165-w (DOI)
Is documented by
Journal article: 10.1016/j.rse.2020.112174 (DOI)