Published December 1, 2020 | Version v1
Journal article Open

Dynamic modeling and energy analysis of renewable heating and electricity systems at residential buildings using phase change material based heat storage technologies

  • 1. Centre for Research & Technology Hellas/Chemical Process and Energy Resources Institute, 6th km. Charilaou-Thermis, Thermi, GR 57001, Greece

Description

Several heat storage systems for domestic application can be used to promote Renewable Energy Sources (RES) penetration by storing excess energy, which would otherwise be rejected during curtailments. The present study investigates two types of PV powered latent heat storage technologies for delivering heat and/or electricity at residential buildings and compares them against a reference case which uses a conventional heat pump as a heating system, also powered by a PV. One technology involves a low temperature PCM thermal energy storage system (LT-TES) heated by either an electric resistance or a heat pump and the other technology involves an ultra-high temperature TES (UHT-TES). It is revealed that any case with heat storage is preferable for better exploiting the produced renewable energy than the conventional one which does not include heat storage. The most favorable from this aspect are the cases which include the UHT-TES, which provide both heat and electricity. Focusing exclusively on heat supply, the most preferable case from a technical performance aspect is the one which includes a heat pump and a LT-TES system, albeit not providing any electricity. On the other hand, the most advantageous only in terms of electricity supply is the case which includes the UHT-TES system.

Files

PCM-houses_manuscript_ preprint.pdf

Files (2.5 MB)

Name Size Download all
md5:01adb4fe49aa997156d9a224ebe3e5d3
2.5 MB Preview Download

Additional details

Funding

AMADEUS – Next GenerAtion MateriAls and Solid State DevicEs for Ultra High Temperature Energy Storage and Conversion 737054
European Commission
SMILE – SMart IsLand Energy systems 731249
European Commission