DEVELOPMENT OF AN IMPROVED METHOD FOR FINDING A SOLUTION FOR NEURO-FUZZY EXPERT SYSTEMS
Creators
- 1. Ivan Chernyakhovsky National Defense University of Ukraine
- 2. East European Slavic University
- 3. Military Institute of Telecommunication and Information Technologies named after the Heroes of Kruty
- 4. Central Scientifically-Research Institute of Arming and Military Equipment of the Armed Forces of Ukraine
- 5. Ivan Kozhedub Kharkiv National Air Force University
Description
Nowadays, artificial intelligence has entered into all spheres of human activity. However, there are some problems in the analysis of objects, for example, there is a priori uncertainty about the state of objects and the analysis takes place in a difficult situation against the background of intentional (natural) interference and uncertainty. The best solution in this situation is to integrate with the data analysis of information systems and artificial neural networks. This paper develops an improved method for finding solutions for neuro-fuzzy expert systems. The proposed method allows increasing the efficiency and reliability of making decisions about the state of the object. Increased efficiency is achieved through the use of evolving neuro-fuzzy artificial neural networks, as well as an improved procedure for their training. Training of evolving neuro-fuzzy artificial neural networks is due to learning their architecture, synaptic weights, type and parameters of the membership function, as well as the application of the procedure of reducing the dimensionality of the feature space. The analysis of objects also takes into account the degree of uncertainty about their condition. In the proposed method, when searching for a solution, the same conditions are calculated once, which speeds up the rule revision cycle and instead of the same conditions of the rules, references to them are used. This reduces the computational complexity of decision-making and does not accumulate errors in the training of artificial neural networks as a result of processing the information coming to the input of artificial neural networks. The use of the proposed method was tested on the example of assessing the state of the radio-electronic environment. This example showed an increase in the efficiency of assessment at the level of 20–25 % by the efficiency of information processing
Files
Development of an improved method for finding a solution for neuro-fuzzy expert systems.pdf
Files
(638.5 kB)
Name | Size | Download all |
---|---|---|
md5:f36d56e0a04fe88e0eb934c096711d30
|
638.5 kB | Preview Download |
Additional details
References
- Bashkirov, O. M., Kostina, O. M., Shishats'kiy, A. V. (2015). Development of integrated communication systems and data transfer for the needs of the Armed Forces. Weapons and military equipment, 5 (1), 35–39.
- Trotsenko, R. V., Bolotov, M. V. (2014). Data extraction process for heterogeneous sources. Privolzhskiy nauchnyi vestnik, 12-1 (40), 52–54.
- Bodyanskiy, E., Strukov, V., Uzlov, D. (2017). Generalized metrics in the problem of analysis of multidimensional data with different scales. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, 3, 98–101.
- Semenov, V. V., Lebedev, I. S. (2019). Processing of signal information in problems of monitoring information security of unmanned autonomous objects. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 19 (3), 492–498. doi: https://doi.org/10.17586/2226-1494-2019-19-3-492-498
- Zhou, S., Yin, Z., Wu, Z., Chen, Y., Zhao, N., Yang, Z. (2019). A robust modulation classification method using convolutional neural networks. EURASIP Journal on Advances in Signal Processing, 2019 (1). doi: https://doi.org/10.1186/s13634-019-0616-6
- Zhang, D., Ding, W., Zhang, B., Xie, C., Li, H., Liu, C., Han, J. (2018). Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles. Sensors, 18 (3), 924. doi: https://doi.org/10.3390/s18030924
- Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
- Belousov, S. M. (2006). Matematicheskaya model' mnogopotochnoy sistemy massovogo obsluzhivaniya, upravlyaemoy planirovshchikom resursov. Vestnik Novosibirskogo gosudarstvennogo universiteta. Ser.: Informatsionnye tehnologii, 4 (1), 14–26.
- Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1.2), 1–6. Available at: http://www.warse.org/IJATCSE/static/pdf/file/ijatcse01812sl2019.pdf
- Gerami Seresht, N., Fayek, A. R. (2020). Neuro-fuzzy system dynamics technique for modeling construction systems. Applied Soft Computing, 93, 106400. doi: https://doi.org/10.1016/j.asoc.2020.106400
- Folorunso, O., Mustapha, O. A. (2015). A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments. Applied Computing and Informatics, 11 (2), 116–129. doi: https://doi.org/10.1016/j.aci.2014.07.001
- Luy, M., Ates, V., Barisci, N., Polat, H., Cam, E. (2018). Short-Term Fuzzy Load Forecasting Model Using Genetic–Fuzzy and Ant Colony–Fuzzy Knowledge Base Optimization. Applied Sciences, 8 (6), 864. doi: https://doi.org/10.3390/app8060864
- Salmi, K., Magrez, H., Ziyyat, A. (2019). A Novel Expert Evaluation Methodology Based on Fuzzy Logic. International Journal of Emerging Technologies in Learning (iJET), 14 (11), 160. doi: https://doi.org/10.3991/ijet.v14i11.10280
- Allaoua, B., Laoufi, A., Gasbaoui, B., Abderrahmani, A. (2009). Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization. Leonardo Electronic Journal of Practices and Technologies, 15, 1–18. Available at: http://lejpt.academicdirect.org/A15/001_018.pdf
- Rybak, V. A., Shokr, A. (2016). Analysis and comparison of existing decision support technology. System analysis and applied information science, 3, 12–18.
- Hassanzad, M., Orooji, A., Valinejadi, A., Velayati, A. (2017). A fuzzy rule-based expert system for diagnosing cystic fibrosis. Electronic Physician, 9 (12), 5974–5984. doi: https://doi.org/10.19082/5974
- Shang, W., Gong, T., Chen, C., Hou, J., Zeng, P. (2019). Information Security Risk Assessment Method for Ship Control System Based on Fuzzy Sets and Attack Trees. Security and Communication Networks, 2019, 1–11. doi: https://doi.org/10.1155/2019/3574675
- Safdari, R., Kadivar, M., Nazari, M., Mohammadi, M. (2017). Fuzzy Expert System to Diagnose Neonatal Peripherally Inserted Central Catheters Infection. Health Information Management, 13 (7), 446–452.
- Al-Qudah, Y., Hassan, M., Hassan, N. (2019). Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set Theory and Its Application in Decision-Making. Symmetry, 11 (3), 358. doi: https://doi.org/10.3390/sym11030358
- Mikhailov, I. S., Zaw, M. (2015). Finding sloutions by the modified Rete algorithm for fuzzy expert systems. Software & Systems, 4, 142–147. doi: https://doi.org/10.15827/0236-235X.112.142-147
- Mazhara, O. O. (2014). Comparison of TREAT and RETE pattern matching algorithms. Adaptyvni systemy avtomatychnoho upravlinnia, 1 (24), 53–61.
- Mazhara, O. A. (2015). Treat algorithm implementation by the basic match algorithm based on CLIPS programming environment. Electronic Modeling, 37 (5), 61–75.
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301