iSDAsoil: soil pH for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil pH (1:1 Soil-Water Suspension) predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_ph_h2o_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil pH mean value,
- sol_ph_h2o_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil pH model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: ph_h2o
R-square: 0.818
Fitted values sd: 0.972
RMSE: 0.459
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-5.5939 -0.2328 -0.0066 0.2222 4.7477
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.113440 1.164473 0.956 0.338986
regr.ranger 1.032918 0.003138 329.116 < 2e-16 ***
regr.xgboost -0.014201 0.004185 -3.393 0.000691 ***
regr.cubist 0.049667 0.003709 13.392 < 2e-16 ***
regr.nnet -0.188570 0.188214 -1.002 0.316398
regr.cvglmnet -0.059763 0.003636 -16.438 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4591 on 133378 degrees of freedom
Multiple R-squared: 0.8176, Adjusted R-squared: 0.8176
F-statistic: 1.195e+05 on 5 and 133378 DF, p-value: < 2.2e-16
To back-transform values (y) to index use:
index = y / 10
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_pH_30m.jpg
Files
(30.6 GB)
Name | Size | Download all |
---|---|---|
md5:ab76a060d822d25d4a4a97e3721a6489
|
290.1 kB | Preview Download |
md5:036c4477d2ced492ffdb8c4302ec8cb8
|
5.6 kB | Preview Download |
md5:e33fe611130346cd347785cb34b7fd48
|
9.3 GB | Preview Download |
md5:385f53101954545e91d00cf78f0a3f70
|
9.3 GB | Preview Download |
md5:1139c7bdca3227963d93f139bed0a3d8
|
6.0 GB | Preview Download |
md5:0de6a4ea1a6279ef8d3843d618e5e27e
|
6.0 GB | Preview Download |
Additional details
Related works
- Is supplemented by
- Dataset: 10.5281/zenodo.4090926 (DOI)
- Dataset: 10.5281/zenodo.4088112 (DOI)
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.
- Vågen, T. G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T., & Gumbricht, T. (2016). Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, 216-225.