Dataset Open Access
Oesterle, Jonathan; Behrens, Christian; Schröder, Cornelius; Herrmann, Thoralf; Euler, Thomas; Franke, Katrin; Smith, Robert G; Zeck, Günther; Berens, Philipp
Experimental and precomputed data for the paper "Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics" by Oesterle et al. 2020 (DOI: 10.7554/eLife.54997).
The cone bipolar cell data has been described and published in the paper "Inhibition decorrelates visual feature representations in the inner retina" by Franke et al. 2017 (DOI: 10.1038/nature21394).
This data is both a supplement to the Oesterle et al. paper and the code for this paper.
The code is available in this GitHub repository.
We recommend downloading the GitHub repository and to follow the instructions there.
Name | Size | |
---|---|---|
oesterle_el_al_data.zip
md5:41d116be6781d2dab5ec0a769209743e |
13.6 GB | Download |
Oesterle et al. (2020), Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics, (DOI: 10.7554/eLife.54997)
Franke et al. (2017), Inhibition decorrelates visual feature representations in the inner retina, (DOI: 10.1038/nature21394)
All versions | This version | |
---|---|---|
Views | 96 | 96 |
Downloads | 16 | 16 |
Data volume | 217.9 GB | 217.9 GB |
Unique views | 88 | 88 |
Unique downloads | 14 | 14 |