Dataset Open Access

Data for "Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics"

Oesterle, Jonathan; Behrens, Christian; Schröder, Cornelius; Herrmann, Thoralf; Euler, Thomas; Franke, Katrin; Smith, Robert G; Zeck, Günther; Berens, Philipp

Experimental and precomputed data for the paper "Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics" by Oesterle et al. 2020 (DOI: 10.7554/eLife.54997).

The cone bipolar cell data has been described and published in the paper "Inhibition decorrelates visual feature representations in the inner retina" by Franke et al. 2017 (DOI: 10.1038/nature21394). 

This data is both a supplement to the Oesterle et al. paper and the code for this paper.

The code is available in this GitHub repository.

We recommend downloading the GitHub repository and to follow the instructions there.

Files (13.6 GB)
Name Size
oesterle_el_al_data.zip
md5:41d116be6781d2dab5ec0a769209743e
13.6 GB Download
  • Oesterle et al. (2020), Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics, (DOI: 10.7554/eLife.54997)

  • Franke et al. (2017), Inhibition decorrelates visual feature representations in the inner retina, (DOI: 10.1038/nature21394)

96
16
views
downloads
All versions This version
Views 9696
Downloads 1616
Data volume 217.9 GB217.9 GB
Unique views 8888
Unique downloads 1414

Share

Cite as