Dataset Open Access

Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing - Model Weights, Chains, BNN Samples, and Simulated Datasets

Wagner-Carena, Sebastian; Park, Ji Won; Birrer, Simon; Marshall, Philip; Roodman, Aaron; Wechsler, Risa

The model weights, chains, simulated datasets, and BNN samples used to produce the results shown in LSST DESC Collaboration paper "Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing." All files presented here are meant for use in tandem with the python package "ovejero" (https://github.com/swagnercarena/ovejero).

Files (22.1 GB)
Name Size
datasets.zip
md5:0fb5e9ddb391ea9c5e87e05ae5d411e5
297.3 MB Download
forward_modeling.zip
md5:9a16f09fec4571c7f4d741fbac99ae6e
337.6 MB Download
hierarchical_results.zip
md5:ccc828043432dac3e8c335470cd01749
3.1 GB Download
models.zip
md5:0c0cd803ea13bc39bcec011ae70ab722
5.2 GB Download
train.zip
md5:38c3b885a6a106152fc746c689ee905d
12.5 GB Download
validation_results.zip
md5:31550a72dc06c7184e7553d33fcfd0d9
630.7 MB Download
21
6
views
downloads
All versions This version
Views 2121
Downloads 66
Data volume 22.1 GB22.1 GB
Unique views 1616
Unique downloads 11

Share

Cite as