iSDAsoil: soil sand content (USDA system) for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil sand content in % predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, LandPKS, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_sand_tot_psa_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil sand content mean value,
- sol_sand_tot_psa_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil sand content model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: sand_tot_psa
R-square: 0.736
Fitted values sd: 22.8
RMSE: 13.7
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-80.626 -5.321 0.221 6.071 88.686
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.687471 24.022001 0.278 0.780714
regr.ranger 1.060521 0.003503 302.742 < 2e-16 ***
regr.xgboost -0.018718 0.004910 -3.812 0.000138 ***
regr.cubist 0.031749 0.003922 8.096 5.73e-16 ***
regr.nnet -0.161127 0.422746 -0.381 0.703098
regr.cvglmnet -0.028217 0.004462 -6.323 2.57e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.65 on 122261 degrees of freedom
Multiple R-squared: 0.736, Adjusted R-squared: 0.736
F-statistic: 6.818e+04 on 5 and 122261 DF, p-value: < 2.2e-16
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_sand_content_30m.png
Files
(41.5 GB)
Name | Size | Download all |
---|---|---|
md5:ff4df1d665796a4cfd33637a5ac58afa
|
573.3 kB | Preview Download |
md5:506731fd06dcb5f9a892a7c24bd6849c
|
5.6 kB | Preview Download |
md5:ea45e6a383b8e4da9afbbbaaf2fb51c5
|
15.5 GB | Preview Download |
md5:79772cf3464cfbaf2ad11560a84b0ab7
|
14.8 GB | Preview Download |
md5:2e01e20786de3f7ba8138cd157d32a30
|
11.1 GB | Preview Download |
Additional details
Related works
- Is supplemented by
- Dataset: 10.5281/zenodo.4085159 (DOI)
- Dataset: 10.5281/zenodo.4094609 (DOI)
- Dataset: 10.5281/zenodo.4094615 (DOI)
- Dataset: 10.5281/zenodo.4091153 (DOI)
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Herrick, Jeffrey E. (2013): "The Global Land-Potential Knowledge System (LandPKS): Supporting Evidence-based, Site-specific Land Use and Management through Cloud Computing, Mobile Applications, and Crowdsourcing." Journal of Soil and Water Conservation: 5A-12A.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.