iSDAsoil: soil stone content for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil stone content / coarse fragments log-transformed predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_log.wpg2_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil stone content mean value,
- sol_log.wpg2_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil stone content model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: log.wpg2
R-square: 0.709
Fitted values sd: 1.25
RMSE: 0.803
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-4.0555 -0.3113 -0.0222 0.2378 4.5794
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.008606 1.361982 -0.006 0.995
regr.ranger 0.972265 0.004443 218.854 < 2e-16 ***
regr.xgboost 0.034649 0.006404 5.411 6.3e-08 ***
regr.cubist 0.069589 0.005229 13.308 < 2e-16 ***
regr.nnet -0.012756 0.796535 -0.016 0.987
regr.cvglmnet -0.056645 0.005509 -10.283 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8032 on 92785 degrees of freedom
Multiple R-squared: 0.7092, Adjusted R-squared: 0.7092
F-statistic: 4.525e+04 on 5 and 92785 DF, p-value: < 2.2e-16
To back-transform values (y) to % use the following formula:
% = expm1( y / 10 )
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_stone_content_30m.png
Files
(35.7 GB)
Name | Size | Download all |
---|---|---|
md5:ddc152d4fa12bb13389833bf30996402
|
589.1 kB | Preview Download |
md5:7d3ae377b7ea534ea3a62d8a5c665f59
|
5.6 kB | Preview Download |
md5:d0fd625c3ad1650720ec0e7ada1d8143
|
11.1 GB | Preview Download |
md5:8f2e047a955d8e573d9acd0bf0158e70
|
11.4 GB | Preview Download |
md5:dfd1367ea4d5a16f730a41e39f90f537
|
6.4 GB | Preview Download |
md5:0f3e0e85e65b403c723e01dbb88dc24b
|
6.7 GB | Preview Download |
Additional details
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Herrick, Jeffrey E. (2013): "The Global Land-Potential Knowledge System (LandPKS): Supporting Evidence-based, Site-specific Land Use and Management through Cloud Computing, Mobile Applications, and Crowdsourcing." Journal of Soil and Water Conservation: 5A-12A.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.