Published October 15, 2020 | Version v0.13
Dataset Open

iSDAsoil: soil stone content for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths

  • 1. EnvirometriX
  • 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
  • 3. MultiOne
  • 4. University of Belgrade
  • 5. Rothamsted Research
  • 6. World Agroforestry (ICRAF)

Description

iSDAsoil dataset soil stone content / coarse fragments log-transformed predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:

Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y

To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.

Layer description:

  • sol_log.wpg2_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil stone content mean value,
  • sol_log.wpg2_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil stone content model (prediction) errors,

Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:

Variable: log.wpg2 
R-square: 0.709 
Fitted values sd: 1.25 
RMSE: 0.803 

Random forest model:
Call:
stats::lm(formula = f, data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.0555 -0.3113 -0.0222  0.2378  4.5794 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)   -0.008606   1.361982  -0.006    0.995    
regr.ranger    0.972265   0.004443 218.854  < 2e-16 ***
regr.xgboost   0.034649   0.006404   5.411  6.3e-08 ***
regr.cubist    0.069589   0.005229  13.308  < 2e-16 ***
regr.nnet     -0.012756   0.796535  -0.016    0.987    
regr.cvglmnet -0.056645   0.005509 -10.283  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8032 on 92785 degrees of freedom
Multiple R-squared:  0.7092,	Adjusted R-squared:  0.7092 
F-statistic: 4.525e+04 on 5 and 92785 DF,  p-value: < 2.2e-16

To back-transform values (y) to % use the following formula:

% = expm1( y / 10 )

To submit an issue or request support please visit https://isda-africa.com/isdasoil

Notes

iSDA is a social enterprise with the mission to improve smallholder farmer profitability across Africa. iSDA builds on the legacy of the African Soils information service (AfSIS) project. We are grateful for the outputs generated by all former AfSIS project partners: Columbia University, Rothamsted Research, World Agroforestry (ICRAF), Quantitative Engineering Design (QED), ISRIC — World Soil Information, International Institute of Tropical Agriculture (IITA), Ethiopia Soil Information Service (EthioSIS), Ghana Soil Information Service (GhaSIS), Nigeria Soil Information Service (NiSIS) and Tanzania Soil Information Service (TanSIS). More details on AfSIS partners and data contributors can be found at https://isda-africa.com/isdasoil

Files

001_africa_soil_stone_content_30m.png

Files (35.7 GB)

Name Size Download all
md5:ddc152d4fa12bb13389833bf30996402
589.1 kB Preview Download
md5:7d3ae377b7ea534ea3a62d8a5c665f59
5.6 kB Preview Download
md5:d0fd625c3ad1650720ec0e7ada1d8143
11.1 GB Preview Download
md5:8f2e047a955d8e573d9acd0bf0158e70
11.4 GB Preview Download
md5:dfd1367ea4d5a16f730a41e39f90f537
6.4 GB Preview Download
md5:0f3e0e85e65b403c723e01dbb88dc24b
6.7 GB Preview Download

Additional details

References

  • Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
  • Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
  • Herrick, Jeffrey E. (2013): "The Global Land-Potential Knowledge System (LandPKS): Supporting Evidence-based, Site-specific Land Use and Management through Cloud Computing, Mobile Applications, and Crowdsourcing." Journal of Soil and Water Conservation: 5A-12A.
  • Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.