iSDAsoil: soil extractable Potassium for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil extractable Potassium (K) log-transformed predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_log.k_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil extractable Potassium mean value,
- sol_log.k_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil extractable Potassium model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: log.k_mehlich3
R-square: 0.773
Fitted values sd: 0.938
RMSE: 0.509
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-4.3088 -0.2648 -0.0037 0.2639 6.8136
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.907726 6.134422 1.778 0.0754 .
regr.ranger 1.004487 0.003878 259.026 <2e-16 ***
regr.xgboost -0.004081 0.004739 -0.861 0.3892
regr.cubist 0.084556 0.004346 19.454 <2e-16 ***
regr.nnet -2.205286 1.228586 -1.795 0.0727 .
regr.cvglmnet -0.064510 0.003933 -16.401 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5092 on 139122 degrees of freedom
Multiple R-squared: 0.7725, Adjusted R-squared: 0.7725
F-statistic: 9.451e+04 on 5 and 139122 DF, p-value: < 2.2e-16
To back-transform values (y) to ppm use the following formula:
ppm = expm1( y / 10 )
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_extr_potassium_30m.png
Files
(27.3 GB)
Name | Size | Download all |
---|---|---|
md5:6614979100fbf0be4ec59bce3366c3af
|
637.6 kB | Preview Download |
md5:95df304ddb057940f78aeb12ad4570de
|
5.5 kB | Preview Download |
md5:bf77d6a1144d674b4e4a1a4fe0e85d53
|
8.5 GB | Preview Download |
md5:55df4ee3d5e1feb3d0e945724770aab8
|
8.3 GB | Preview Download |
md5:0b7093a54e06f8e32bfb2cf67b37bea5
|
5.3 GB | Preview Download |
md5:2f6ea0f0ad183104021f8a81ee2d572a
|
5.2 GB | Preview Download |
Additional details
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.
- Vågen, T. G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T., & Gumbricht, T. (2016). Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, 216-225.